--- tags: - spacy - token-classification - ner language: - it model-index: - name: it_ItLit800 results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9747904918 - name: NER Recall type: recall value: 0.9781820932 - name: NER F Score type: f_score value: 0.9764833475 --- | Feature | Description | | --- | --- | | **Name** | `it_ItLit800` | | **Version** | `0.0.0` | | **spaCy** | `>=3.5.0,<3.6.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (27 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `AGE`, `ANTRO`, `CHR`, `CULT`, `DATE`, `DATECEL`, `DATERNG`, `DIST`, `GEO`, `GPE`, `HON`, `KING`, `LOC`, `MATH`, `MISC`, `MON`, `NAME`, `NORP`, `ORG`, `PER`, `POI`, `QNT`, `QTM`, `REL`, `TIME`, `WRONG`, `XORG` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 97.65 | | `ENTS_P` | 97.48 | | `ENTS_R` | 97.82 | | `TOK2VEC_LOSS` | 215442.06 | | `NER_LOSS` | 129597.07 |