Upload ExportRecipe_1B.ipynb
Browse files- ExportRecipe_1B.ipynb +1455 -0
ExportRecipe_1B.ipynb
ADDED
@@ -0,0 +1,1455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
},
|
15 |
+
"widgets": {
|
16 |
+
"application/vnd.jupyter.widget-state+json": {
|
17 |
+
"657f531df8644e42bc239babc3585643": {
|
18 |
+
"model_module": "@jupyter-widgets/controls",
|
19 |
+
"model_name": "VBoxModel",
|
20 |
+
"model_module_version": "1.5.0",
|
21 |
+
"state": {
|
22 |
+
"_dom_classes": [],
|
23 |
+
"_model_module": "@jupyter-widgets/controls",
|
24 |
+
"_model_module_version": "1.5.0",
|
25 |
+
"_model_name": "VBoxModel",
|
26 |
+
"_view_count": null,
|
27 |
+
"_view_module": "@jupyter-widgets/controls",
|
28 |
+
"_view_module_version": "1.5.0",
|
29 |
+
"_view_name": "VBoxView",
|
30 |
+
"box_style": "",
|
31 |
+
"children": [],
|
32 |
+
"layout": "IPY_MODEL_57fe5509178e4659a2a62fe9ad6f4ce8"
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"d039d532f46e4f76addd8c1f477945b0": {
|
36 |
+
"model_module": "@jupyter-widgets/controls",
|
37 |
+
"model_name": "HTMLModel",
|
38 |
+
"model_module_version": "1.5.0",
|
39 |
+
"state": {
|
40 |
+
"_dom_classes": [],
|
41 |
+
"_model_module": "@jupyter-widgets/controls",
|
42 |
+
"_model_module_version": "1.5.0",
|
43 |
+
"_model_name": "HTMLModel",
|
44 |
+
"_view_count": null,
|
45 |
+
"_view_module": "@jupyter-widgets/controls",
|
46 |
+
"_view_module_version": "1.5.0",
|
47 |
+
"_view_name": "HTMLView",
|
48 |
+
"description": "",
|
49 |
+
"description_tooltip": null,
|
50 |
+
"layout": "IPY_MODEL_86d98f85accf42f1b579eef91d933134",
|
51 |
+
"placeholder": "",
|
52 |
+
"style": "IPY_MODEL_3c7c9ee54c4143899feb58b717824e77",
|
53 |
+
"value": "<center> <img\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.svg\nalt='Hugging Face'> <br> Copy a token from <a\nhref=\"https://huggingface.co/settings/tokens\" target=\"_blank\">your Hugging Face\ntokens page</a> and paste it below. <br> Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. </center>"
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"9e88a1f4b9c549b49781c406a0f67d47": {
|
57 |
+
"model_module": "@jupyter-widgets/controls",
|
58 |
+
"model_name": "PasswordModel",
|
59 |
+
"model_module_version": "1.5.0",
|
60 |
+
"state": {
|
61 |
+
"_dom_classes": [],
|
62 |
+
"_model_module": "@jupyter-widgets/controls",
|
63 |
+
"_model_module_version": "1.5.0",
|
64 |
+
"_model_name": "PasswordModel",
|
65 |
+
"_view_count": null,
|
66 |
+
"_view_module": "@jupyter-widgets/controls",
|
67 |
+
"_view_module_version": "1.5.0",
|
68 |
+
"_view_name": "PasswordView",
|
69 |
+
"continuous_update": true,
|
70 |
+
"description": "Token:",
|
71 |
+
"description_tooltip": null,
|
72 |
+
"disabled": false,
|
73 |
+
"layout": "IPY_MODEL_4cd2be409f8b4e0582c94504b89ab443",
|
74 |
+
"placeholder": "",
|
75 |
+
"style": "IPY_MODEL_b7e5c9a9ac4343ea92461ca6429c541a",
|
76 |
+
"value": ""
|
77 |
+
}
|
78 |
+
},
|
79 |
+
"ca244e54ce4f4848acfbb2c595e78982": {
|
80 |
+
"model_module": "@jupyter-widgets/controls",
|
81 |
+
"model_name": "CheckboxModel",
|
82 |
+
"model_module_version": "1.5.0",
|
83 |
+
"state": {
|
84 |
+
"_dom_classes": [],
|
85 |
+
"_model_module": "@jupyter-widgets/controls",
|
86 |
+
"_model_module_version": "1.5.0",
|
87 |
+
"_model_name": "CheckboxModel",
|
88 |
+
"_view_count": null,
|
89 |
+
"_view_module": "@jupyter-widgets/controls",
|
90 |
+
"_view_module_version": "1.5.0",
|
91 |
+
"_view_name": "CheckboxView",
|
92 |
+
"description": "Add token as git credential?",
|
93 |
+
"description_tooltip": null,
|
94 |
+
"disabled": false,
|
95 |
+
"indent": true,
|
96 |
+
"layout": "IPY_MODEL_bcc60e17b06e4c9192982881cf84653c",
|
97 |
+
"style": "IPY_MODEL_e6d20c110eee4a6f8811df4eece8ee9a",
|
98 |
+
"value": true
|
99 |
+
}
|
100 |
+
},
|
101 |
+
"176fd3b64a59444bae540a67f568fcb0": {
|
102 |
+
"model_module": "@jupyter-widgets/controls",
|
103 |
+
"model_name": "ButtonModel",
|
104 |
+
"model_module_version": "1.5.0",
|
105 |
+
"state": {
|
106 |
+
"_dom_classes": [],
|
107 |
+
"_model_module": "@jupyter-widgets/controls",
|
108 |
+
"_model_module_version": "1.5.0",
|
109 |
+
"_model_name": "ButtonModel",
|
110 |
+
"_view_count": null,
|
111 |
+
"_view_module": "@jupyter-widgets/controls",
|
112 |
+
"_view_module_version": "1.5.0",
|
113 |
+
"_view_name": "ButtonView",
|
114 |
+
"button_style": "",
|
115 |
+
"description": "Login",
|
116 |
+
"disabled": false,
|
117 |
+
"icon": "",
|
118 |
+
"layout": "IPY_MODEL_c5a4d6704a194a22a2f147e9573a3843",
|
119 |
+
"style": "IPY_MODEL_e0c8bc7243fd413ea58c683e05e40075",
|
120 |
+
"tooltip": ""
|
121 |
+
}
|
122 |
+
},
|
123 |
+
"b7c6689aada446a088954eb89d051918": {
|
124 |
+
"model_module": "@jupyter-widgets/controls",
|
125 |
+
"model_name": "HTMLModel",
|
126 |
+
"model_module_version": "1.5.0",
|
127 |
+
"state": {
|
128 |
+
"_dom_classes": [],
|
129 |
+
"_model_module": "@jupyter-widgets/controls",
|
130 |
+
"_model_module_version": "1.5.0",
|
131 |
+
"_model_name": "HTMLModel",
|
132 |
+
"_view_count": null,
|
133 |
+
"_view_module": "@jupyter-widgets/controls",
|
134 |
+
"_view_module_version": "1.5.0",
|
135 |
+
"_view_name": "HTMLView",
|
136 |
+
"description": "",
|
137 |
+
"description_tooltip": null,
|
138 |
+
"layout": "IPY_MODEL_c6bb82062fbc4dea90e4d532e92eeb23",
|
139 |
+
"placeholder": "",
|
140 |
+
"style": "IPY_MODEL_b44230e168064796bb9bd28b0ac92be6",
|
141 |
+
"value": "\n<b>Pro Tip:</b> If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. </center>"
|
142 |
+
}
|
143 |
+
},
|
144 |
+
"57fe5509178e4659a2a62fe9ad6f4ce8": {
|
145 |
+
"model_module": "@jupyter-widgets/base",
|
146 |
+
"model_name": "LayoutModel",
|
147 |
+
"model_module_version": "1.2.0",
|
148 |
+
"state": {
|
149 |
+
"_model_module": "@jupyter-widgets/base",
|
150 |
+
"_model_module_version": "1.2.0",
|
151 |
+
"_model_name": "LayoutModel",
|
152 |
+
"_view_count": null,
|
153 |
+
"_view_module": "@jupyter-widgets/base",
|
154 |
+
"_view_module_version": "1.2.0",
|
155 |
+
"_view_name": "LayoutView",
|
156 |
+
"align_content": null,
|
157 |
+
"align_items": "center",
|
158 |
+
"align_self": null,
|
159 |
+
"border": null,
|
160 |
+
"bottom": null,
|
161 |
+
"display": "flex",
|
162 |
+
"flex": null,
|
163 |
+
"flex_flow": "column",
|
164 |
+
"grid_area": null,
|
165 |
+
"grid_auto_columns": null,
|
166 |
+
"grid_auto_flow": null,
|
167 |
+
"grid_auto_rows": null,
|
168 |
+
"grid_column": null,
|
169 |
+
"grid_gap": null,
|
170 |
+
"grid_row": null,
|
171 |
+
"grid_template_areas": null,
|
172 |
+
"grid_template_columns": null,
|
173 |
+
"grid_template_rows": null,
|
174 |
+
"height": null,
|
175 |
+
"justify_content": null,
|
176 |
+
"justify_items": null,
|
177 |
+
"left": null,
|
178 |
+
"margin": null,
|
179 |
+
"max_height": null,
|
180 |
+
"max_width": null,
|
181 |
+
"min_height": null,
|
182 |
+
"min_width": null,
|
183 |
+
"object_fit": null,
|
184 |
+
"object_position": null,
|
185 |
+
"order": null,
|
186 |
+
"overflow": null,
|
187 |
+
"overflow_x": null,
|
188 |
+
"overflow_y": null,
|
189 |
+
"padding": null,
|
190 |
+
"right": null,
|
191 |
+
"top": null,
|
192 |
+
"visibility": null,
|
193 |
+
"width": "50%"
|
194 |
+
}
|
195 |
+
},
|
196 |
+
"86d98f85accf42f1b579eef91d933134": {
|
197 |
+
"model_module": "@jupyter-widgets/base",
|
198 |
+
"model_name": "LayoutModel",
|
199 |
+
"model_module_version": "1.2.0",
|
200 |
+
"state": {
|
201 |
+
"_model_module": "@jupyter-widgets/base",
|
202 |
+
"_model_module_version": "1.2.0",
|
203 |
+
"_model_name": "LayoutModel",
|
204 |
+
"_view_count": null,
|
205 |
+
"_view_module": "@jupyter-widgets/base",
|
206 |
+
"_view_module_version": "1.2.0",
|
207 |
+
"_view_name": "LayoutView",
|
208 |
+
"align_content": null,
|
209 |
+
"align_items": null,
|
210 |
+
"align_self": null,
|
211 |
+
"border": null,
|
212 |
+
"bottom": null,
|
213 |
+
"display": null,
|
214 |
+
"flex": null,
|
215 |
+
"flex_flow": null,
|
216 |
+
"grid_area": null,
|
217 |
+
"grid_auto_columns": null,
|
218 |
+
"grid_auto_flow": null,
|
219 |
+
"grid_auto_rows": null,
|
220 |
+
"grid_column": null,
|
221 |
+
"grid_gap": null,
|
222 |
+
"grid_row": null,
|
223 |
+
"grid_template_areas": null,
|
224 |
+
"grid_template_columns": null,
|
225 |
+
"grid_template_rows": null,
|
226 |
+
"height": null,
|
227 |
+
"justify_content": null,
|
228 |
+
"justify_items": null,
|
229 |
+
"left": null,
|
230 |
+
"margin": null,
|
231 |
+
"max_height": null,
|
232 |
+
"max_width": null,
|
233 |
+
"min_height": null,
|
234 |
+
"min_width": null,
|
235 |
+
"object_fit": null,
|
236 |
+
"object_position": null,
|
237 |
+
"order": null,
|
238 |
+
"overflow": null,
|
239 |
+
"overflow_x": null,
|
240 |
+
"overflow_y": null,
|
241 |
+
"padding": null,
|
242 |
+
"right": null,
|
243 |
+
"top": null,
|
244 |
+
"visibility": null,
|
245 |
+
"width": null
|
246 |
+
}
|
247 |
+
},
|
248 |
+
"3c7c9ee54c4143899feb58b717824e77": {
|
249 |
+
"model_module": "@jupyter-widgets/controls",
|
250 |
+
"model_name": "DescriptionStyleModel",
|
251 |
+
"model_module_version": "1.5.0",
|
252 |
+
"state": {
|
253 |
+
"_model_module": "@jupyter-widgets/controls",
|
254 |
+
"_model_module_version": "1.5.0",
|
255 |
+
"_model_name": "DescriptionStyleModel",
|
256 |
+
"_view_count": null,
|
257 |
+
"_view_module": "@jupyter-widgets/base",
|
258 |
+
"_view_module_version": "1.2.0",
|
259 |
+
"_view_name": "StyleView",
|
260 |
+
"description_width": ""
|
261 |
+
}
|
262 |
+
},
|
263 |
+
"4cd2be409f8b4e0582c94504b89ab443": {
|
264 |
+
"model_module": "@jupyter-widgets/base",
|
265 |
+
"model_name": "LayoutModel",
|
266 |
+
"model_module_version": "1.2.0",
|
267 |
+
"state": {
|
268 |
+
"_model_module": "@jupyter-widgets/base",
|
269 |
+
"_model_module_version": "1.2.0",
|
270 |
+
"_model_name": "LayoutModel",
|
271 |
+
"_view_count": null,
|
272 |
+
"_view_module": "@jupyter-widgets/base",
|
273 |
+
"_view_module_version": "1.2.0",
|
274 |
+
"_view_name": "LayoutView",
|
275 |
+
"align_content": null,
|
276 |
+
"align_items": null,
|
277 |
+
"align_self": null,
|
278 |
+
"border": null,
|
279 |
+
"bottom": null,
|
280 |
+
"display": null,
|
281 |
+
"flex": null,
|
282 |
+
"flex_flow": null,
|
283 |
+
"grid_area": null,
|
284 |
+
"grid_auto_columns": null,
|
285 |
+
"grid_auto_flow": null,
|
286 |
+
"grid_auto_rows": null,
|
287 |
+
"grid_column": null,
|
288 |
+
"grid_gap": null,
|
289 |
+
"grid_row": null,
|
290 |
+
"grid_template_areas": null,
|
291 |
+
"grid_template_columns": null,
|
292 |
+
"grid_template_rows": null,
|
293 |
+
"height": null,
|
294 |
+
"justify_content": null,
|
295 |
+
"justify_items": null,
|
296 |
+
"left": null,
|
297 |
+
"margin": null,
|
298 |
+
"max_height": null,
|
299 |
+
"max_width": null,
|
300 |
+
"min_height": null,
|
301 |
+
"min_width": null,
|
302 |
+
"object_fit": null,
|
303 |
+
"object_position": null,
|
304 |
+
"order": null,
|
305 |
+
"overflow": null,
|
306 |
+
"overflow_x": null,
|
307 |
+
"overflow_y": null,
|
308 |
+
"padding": null,
|
309 |
+
"right": null,
|
310 |
+
"top": null,
|
311 |
+
"visibility": null,
|
312 |
+
"width": null
|
313 |
+
}
|
314 |
+
},
|
315 |
+
"b7e5c9a9ac4343ea92461ca6429c541a": {
|
316 |
+
"model_module": "@jupyter-widgets/controls",
|
317 |
+
"model_name": "DescriptionStyleModel",
|
318 |
+
"model_module_version": "1.5.0",
|
319 |
+
"state": {
|
320 |
+
"_model_module": "@jupyter-widgets/controls",
|
321 |
+
"_model_module_version": "1.5.0",
|
322 |
+
"_model_name": "DescriptionStyleModel",
|
323 |
+
"_view_count": null,
|
324 |
+
"_view_module": "@jupyter-widgets/base",
|
325 |
+
"_view_module_version": "1.2.0",
|
326 |
+
"_view_name": "StyleView",
|
327 |
+
"description_width": ""
|
328 |
+
}
|
329 |
+
},
|
330 |
+
"bcc60e17b06e4c9192982881cf84653c": {
|
331 |
+
"model_module": "@jupyter-widgets/base",
|
332 |
+
"model_name": "LayoutModel",
|
333 |
+
"model_module_version": "1.2.0",
|
334 |
+
"state": {
|
335 |
+
"_model_module": "@jupyter-widgets/base",
|
336 |
+
"_model_module_version": "1.2.0",
|
337 |
+
"_model_name": "LayoutModel",
|
338 |
+
"_view_count": null,
|
339 |
+
"_view_module": "@jupyter-widgets/base",
|
340 |
+
"_view_module_version": "1.2.0",
|
341 |
+
"_view_name": "LayoutView",
|
342 |
+
"align_content": null,
|
343 |
+
"align_items": null,
|
344 |
+
"align_self": null,
|
345 |
+
"border": null,
|
346 |
+
"bottom": null,
|
347 |
+
"display": null,
|
348 |
+
"flex": null,
|
349 |
+
"flex_flow": null,
|
350 |
+
"grid_area": null,
|
351 |
+
"grid_auto_columns": null,
|
352 |
+
"grid_auto_flow": null,
|
353 |
+
"grid_auto_rows": null,
|
354 |
+
"grid_column": null,
|
355 |
+
"grid_gap": null,
|
356 |
+
"grid_row": null,
|
357 |
+
"grid_template_areas": null,
|
358 |
+
"grid_template_columns": null,
|
359 |
+
"grid_template_rows": null,
|
360 |
+
"height": null,
|
361 |
+
"justify_content": null,
|
362 |
+
"justify_items": null,
|
363 |
+
"left": null,
|
364 |
+
"margin": null,
|
365 |
+
"max_height": null,
|
366 |
+
"max_width": null,
|
367 |
+
"min_height": null,
|
368 |
+
"min_width": null,
|
369 |
+
"object_fit": null,
|
370 |
+
"object_position": null,
|
371 |
+
"order": null,
|
372 |
+
"overflow": null,
|
373 |
+
"overflow_x": null,
|
374 |
+
"overflow_y": null,
|
375 |
+
"padding": null,
|
376 |
+
"right": null,
|
377 |
+
"top": null,
|
378 |
+
"visibility": null,
|
379 |
+
"width": null
|
380 |
+
}
|
381 |
+
},
|
382 |
+
"e6d20c110eee4a6f8811df4eece8ee9a": {
|
383 |
+
"model_module": "@jupyter-widgets/controls",
|
384 |
+
"model_name": "DescriptionStyleModel",
|
385 |
+
"model_module_version": "1.5.0",
|
386 |
+
"state": {
|
387 |
+
"_model_module": "@jupyter-widgets/controls",
|
388 |
+
"_model_module_version": "1.5.0",
|
389 |
+
"_model_name": "DescriptionStyleModel",
|
390 |
+
"_view_count": null,
|
391 |
+
"_view_module": "@jupyter-widgets/base",
|
392 |
+
"_view_module_version": "1.2.0",
|
393 |
+
"_view_name": "StyleView",
|
394 |
+
"description_width": ""
|
395 |
+
}
|
396 |
+
},
|
397 |
+
"c5a4d6704a194a22a2f147e9573a3843": {
|
398 |
+
"model_module": "@jupyter-widgets/base",
|
399 |
+
"model_name": "LayoutModel",
|
400 |
+
"model_module_version": "1.2.0",
|
401 |
+
"state": {
|
402 |
+
"_model_module": "@jupyter-widgets/base",
|
403 |
+
"_model_module_version": "1.2.0",
|
404 |
+
"_model_name": "LayoutModel",
|
405 |
+
"_view_count": null,
|
406 |
+
"_view_module": "@jupyter-widgets/base",
|
407 |
+
"_view_module_version": "1.2.0",
|
408 |
+
"_view_name": "LayoutView",
|
409 |
+
"align_content": null,
|
410 |
+
"align_items": null,
|
411 |
+
"align_self": null,
|
412 |
+
"border": null,
|
413 |
+
"bottom": null,
|
414 |
+
"display": null,
|
415 |
+
"flex": null,
|
416 |
+
"flex_flow": null,
|
417 |
+
"grid_area": null,
|
418 |
+
"grid_auto_columns": null,
|
419 |
+
"grid_auto_flow": null,
|
420 |
+
"grid_auto_rows": null,
|
421 |
+
"grid_column": null,
|
422 |
+
"grid_gap": null,
|
423 |
+
"grid_row": null,
|
424 |
+
"grid_template_areas": null,
|
425 |
+
"grid_template_columns": null,
|
426 |
+
"grid_template_rows": null,
|
427 |
+
"height": null,
|
428 |
+
"justify_content": null,
|
429 |
+
"justify_items": null,
|
430 |
+
"left": null,
|
431 |
+
"margin": null,
|
432 |
+
"max_height": null,
|
433 |
+
"max_width": null,
|
434 |
+
"min_height": null,
|
435 |
+
"min_width": null,
|
436 |
+
"object_fit": null,
|
437 |
+
"object_position": null,
|
438 |
+
"order": null,
|
439 |
+
"overflow": null,
|
440 |
+
"overflow_x": null,
|
441 |
+
"overflow_y": null,
|
442 |
+
"padding": null,
|
443 |
+
"right": null,
|
444 |
+
"top": null,
|
445 |
+
"visibility": null,
|
446 |
+
"width": null
|
447 |
+
}
|
448 |
+
},
|
449 |
+
"e0c8bc7243fd413ea58c683e05e40075": {
|
450 |
+
"model_module": "@jupyter-widgets/controls",
|
451 |
+
"model_name": "ButtonStyleModel",
|
452 |
+
"model_module_version": "1.5.0",
|
453 |
+
"state": {
|
454 |
+
"_model_module": "@jupyter-widgets/controls",
|
455 |
+
"_model_module_version": "1.5.0",
|
456 |
+
"_model_name": "ButtonStyleModel",
|
457 |
+
"_view_count": null,
|
458 |
+
"_view_module": "@jupyter-widgets/base",
|
459 |
+
"_view_module_version": "1.2.0",
|
460 |
+
"_view_name": "StyleView",
|
461 |
+
"button_color": null,
|
462 |
+
"font_weight": ""
|
463 |
+
}
|
464 |
+
},
|
465 |
+
"c6bb82062fbc4dea90e4d532e92eeb23": {
|
466 |
+
"model_module": "@jupyter-widgets/base",
|
467 |
+
"model_name": "LayoutModel",
|
468 |
+
"model_module_version": "1.2.0",
|
469 |
+
"state": {
|
470 |
+
"_model_module": "@jupyter-widgets/base",
|
471 |
+
"_model_module_version": "1.2.0",
|
472 |
+
"_model_name": "LayoutModel",
|
473 |
+
"_view_count": null,
|
474 |
+
"_view_module": "@jupyter-widgets/base",
|
475 |
+
"_view_module_version": "1.2.0",
|
476 |
+
"_view_name": "LayoutView",
|
477 |
+
"align_content": null,
|
478 |
+
"align_items": null,
|
479 |
+
"align_self": null,
|
480 |
+
"border": null,
|
481 |
+
"bottom": null,
|
482 |
+
"display": null,
|
483 |
+
"flex": null,
|
484 |
+
"flex_flow": null,
|
485 |
+
"grid_area": null,
|
486 |
+
"grid_auto_columns": null,
|
487 |
+
"grid_auto_flow": null,
|
488 |
+
"grid_auto_rows": null,
|
489 |
+
"grid_column": null,
|
490 |
+
"grid_gap": null,
|
491 |
+
"grid_row": null,
|
492 |
+
"grid_template_areas": null,
|
493 |
+
"grid_template_columns": null,
|
494 |
+
"grid_template_rows": null,
|
495 |
+
"height": null,
|
496 |
+
"justify_content": null,
|
497 |
+
"justify_items": null,
|
498 |
+
"left": null,
|
499 |
+
"margin": null,
|
500 |
+
"max_height": null,
|
501 |
+
"max_width": null,
|
502 |
+
"min_height": null,
|
503 |
+
"min_width": null,
|
504 |
+
"object_fit": null,
|
505 |
+
"object_position": null,
|
506 |
+
"order": null,
|
507 |
+
"overflow": null,
|
508 |
+
"overflow_x": null,
|
509 |
+
"overflow_y": null,
|
510 |
+
"padding": null,
|
511 |
+
"right": null,
|
512 |
+
"top": null,
|
513 |
+
"visibility": null,
|
514 |
+
"width": null
|
515 |
+
}
|
516 |
+
},
|
517 |
+
"b44230e168064796bb9bd28b0ac92be6": {
|
518 |
+
"model_module": "@jupyter-widgets/controls",
|
519 |
+
"model_name": "DescriptionStyleModel",
|
520 |
+
"model_module_version": "1.5.0",
|
521 |
+
"state": {
|
522 |
+
"_model_module": "@jupyter-widgets/controls",
|
523 |
+
"_model_module_version": "1.5.0",
|
524 |
+
"_model_name": "DescriptionStyleModel",
|
525 |
+
"_view_count": null,
|
526 |
+
"_view_module": "@jupyter-widgets/base",
|
527 |
+
"_view_module_version": "1.2.0",
|
528 |
+
"_view_name": "StyleView",
|
529 |
+
"description_width": ""
|
530 |
+
}
|
531 |
+
},
|
532 |
+
"675e215a14f94baea56c552e14425f26": {
|
533 |
+
"model_module": "@jupyter-widgets/controls",
|
534 |
+
"model_name": "LabelModel",
|
535 |
+
"model_module_version": "1.5.0",
|
536 |
+
"state": {
|
537 |
+
"_dom_classes": [],
|
538 |
+
"_model_module": "@jupyter-widgets/controls",
|
539 |
+
"_model_module_version": "1.5.0",
|
540 |
+
"_model_name": "LabelModel",
|
541 |
+
"_view_count": null,
|
542 |
+
"_view_module": "@jupyter-widgets/controls",
|
543 |
+
"_view_module_version": "1.5.0",
|
544 |
+
"_view_name": "LabelView",
|
545 |
+
"description": "",
|
546 |
+
"description_tooltip": null,
|
547 |
+
"layout": "IPY_MODEL_a211b717031d4a88a31a1fc20f2a484e",
|
548 |
+
"placeholder": "",
|
549 |
+
"style": "IPY_MODEL_0efbb27c57f646bcad6f2d75fe478ce9",
|
550 |
+
"value": "Connecting..."
|
551 |
+
}
|
552 |
+
},
|
553 |
+
"a211b717031d4a88a31a1fc20f2a484e": {
|
554 |
+
"model_module": "@jupyter-widgets/base",
|
555 |
+
"model_name": "LayoutModel",
|
556 |
+
"model_module_version": "1.2.0",
|
557 |
+
"state": {
|
558 |
+
"_model_module": "@jupyter-widgets/base",
|
559 |
+
"_model_module_version": "1.2.0",
|
560 |
+
"_model_name": "LayoutModel",
|
561 |
+
"_view_count": null,
|
562 |
+
"_view_module": "@jupyter-widgets/base",
|
563 |
+
"_view_module_version": "1.2.0",
|
564 |
+
"_view_name": "LayoutView",
|
565 |
+
"align_content": null,
|
566 |
+
"align_items": null,
|
567 |
+
"align_self": null,
|
568 |
+
"border": null,
|
569 |
+
"bottom": null,
|
570 |
+
"display": null,
|
571 |
+
"flex": null,
|
572 |
+
"flex_flow": null,
|
573 |
+
"grid_area": null,
|
574 |
+
"grid_auto_columns": null,
|
575 |
+
"grid_auto_flow": null,
|
576 |
+
"grid_auto_rows": null,
|
577 |
+
"grid_column": null,
|
578 |
+
"grid_gap": null,
|
579 |
+
"grid_row": null,
|
580 |
+
"grid_template_areas": null,
|
581 |
+
"grid_template_columns": null,
|
582 |
+
"grid_template_rows": null,
|
583 |
+
"height": null,
|
584 |
+
"justify_content": null,
|
585 |
+
"justify_items": null,
|
586 |
+
"left": null,
|
587 |
+
"margin": null,
|
588 |
+
"max_height": null,
|
589 |
+
"max_width": null,
|
590 |
+
"min_height": null,
|
591 |
+
"min_width": null,
|
592 |
+
"object_fit": null,
|
593 |
+
"object_position": null,
|
594 |
+
"order": null,
|
595 |
+
"overflow": null,
|
596 |
+
"overflow_x": null,
|
597 |
+
"overflow_y": null,
|
598 |
+
"padding": null,
|
599 |
+
"right": null,
|
600 |
+
"top": null,
|
601 |
+
"visibility": null,
|
602 |
+
"width": null
|
603 |
+
}
|
604 |
+
},
|
605 |
+
"0efbb27c57f646bcad6f2d75fe478ce9": {
|
606 |
+
"model_module": "@jupyter-widgets/controls",
|
607 |
+
"model_name": "DescriptionStyleModel",
|
608 |
+
"model_module_version": "1.5.0",
|
609 |
+
"state": {
|
610 |
+
"_model_module": "@jupyter-widgets/controls",
|
611 |
+
"_model_module_version": "1.5.0",
|
612 |
+
"_model_name": "DescriptionStyleModel",
|
613 |
+
"_view_count": null,
|
614 |
+
"_view_module": "@jupyter-widgets/base",
|
615 |
+
"_view_module_version": "1.2.0",
|
616 |
+
"_view_name": "StyleView",
|
617 |
+
"description_width": ""
|
618 |
+
}
|
619 |
+
}
|
620 |
+
}
|
621 |
+
}
|
622 |
+
},
|
623 |
+
"cells": [
|
624 |
+
{
|
625 |
+
"cell_type": "markdown",
|
626 |
+
"source": [
|
627 |
+
"**Step 1: Setting Up ExecuTorch**"
|
628 |
+
],
|
629 |
+
"metadata": {
|
630 |
+
"id": "ZOq6nHdVElC6"
|
631 |
+
}
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"cell_type": "code",
|
635 |
+
"execution_count": 1,
|
636 |
+
"metadata": {
|
637 |
+
"colab": {
|
638 |
+
"base_uri": "https://localhost:8080/"
|
639 |
+
},
|
640 |
+
"collapsed": true,
|
641 |
+
"id": "EWz6sJfRDQKT",
|
642 |
+
"outputId": "0a91e8cc-5e82-4fae-a706-3544b2d9a275"
|
643 |
+
},
|
644 |
+
"outputs": [
|
645 |
+
{
|
646 |
+
"output_type": "stream",
|
647 |
+
"name": "stdout",
|
648 |
+
"text": [
|
649 |
+
"Requirement already satisfied: executorch in /usr/local/lib/python3.11/dist-packages (0.6.0+cpu)\n",
|
650 |
+
"Requirement already satisfied: expecttest in /usr/local/lib/python3.11/dist-packages (from executorch) (0.3.0)\n",
|
651 |
+
"Requirement already satisfied: flatbuffers in /usr/local/lib/python3.11/dist-packages (from executorch) (25.2.10)\n",
|
652 |
+
"Requirement already satisfied: hypothesis in /usr/local/lib/python3.11/dist-packages (from executorch) (6.131.0)\n",
|
653 |
+
"Requirement already satisfied: mpmath==1.3.0 in /usr/local/lib/python3.11/dist-packages (from executorch) (1.3.0)\n",
|
654 |
+
"Requirement already satisfied: numpy>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from executorch) (2.0.2)\n",
|
655 |
+
"Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from executorch) (24.2)\n",
|
656 |
+
"Requirement already satisfied: pandas>=2.2.2 in /usr/local/lib/python3.11/dist-packages (from executorch) (2.2.2)\n",
|
657 |
+
"Requirement already satisfied: parameterized in /usr/local/lib/python3.11/dist-packages (from executorch) (0.9.0)\n",
|
658 |
+
"Requirement already satisfied: pytest in /usr/local/lib/python3.11/dist-packages (from executorch) (8.3.5)\n",
|
659 |
+
"Requirement already satisfied: pytest-xdist in /usr/local/lib/python3.11/dist-packages (from executorch) (3.6.1)\n",
|
660 |
+
"Requirement already satisfied: pytest-rerunfailures in /usr/local/lib/python3.11/dist-packages (from executorch) (15.0)\n",
|
661 |
+
"Requirement already satisfied: pyyaml in /usr/local/lib/python3.11/dist-packages (from executorch) (6.0.2)\n",
|
662 |
+
"Requirement already satisfied: ruamel.yaml in /usr/local/lib/python3.11/dist-packages (from executorch) (0.18.10)\n",
|
663 |
+
"Requirement already satisfied: sympy in /usr/local/lib/python3.11/dist-packages (from executorch) (1.13.3)\n",
|
664 |
+
"Requirement already satisfied: tabulate in /usr/local/lib/python3.11/dist-packages (from executorch) (0.9.0)\n",
|
665 |
+
"Requirement already satisfied: torchao==0.10.0 in /usr/local/lib/python3.11/dist-packages (from executorch) (0.10.0+cpu)\n",
|
666 |
+
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.11/dist-packages (from executorch) (4.13.1)\n",
|
667 |
+
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas>=2.2.2->executorch) (2.8.2)\n",
|
668 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas>=2.2.2->executorch) (2025.2)\n",
|
669 |
+
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas>=2.2.2->executorch) (2025.2)\n",
|
670 |
+
"Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.11/dist-packages (from hypothesis->executorch) (25.3.0)\n",
|
671 |
+
"Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /usr/local/lib/python3.11/dist-packages (from hypothesis->executorch) (2.4.0)\n",
|
672 |
+
"Requirement already satisfied: iniconfig in /usr/local/lib/python3.11/dist-packages (from pytest->executorch) (2.1.0)\n",
|
673 |
+
"Requirement already satisfied: pluggy<2,>=1.5 in /usr/local/lib/python3.11/dist-packages (from pytest->executorch) (1.5.0)\n",
|
674 |
+
"Requirement already satisfied: execnet>=2.1 in /usr/local/lib/python3.11/dist-packages (from pytest-xdist->executorch) (2.1.1)\n",
|
675 |
+
"Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in /usr/local/lib/python3.11/dist-packages (from ruamel.yaml->executorch) (0.2.12)\n",
|
676 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas>=2.2.2->executorch) (1.17.0)\n"
|
677 |
+
]
|
678 |
+
}
|
679 |
+
],
|
680 |
+
"source": [
|
681 |
+
"!pip install executorch\n",
|
682 |
+
"# Testing release candidate\n",
|
683 |
+
"# !pip install --extra-index-url https://download.pytorch.org/whl/test/cpu executorch==0.6.0 torch==2.7.0 torchaudio==2.7.0 torchvision==0.22.0"
|
684 |
+
]
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"cell_type": "markdown",
|
688 |
+
"source": [],
|
689 |
+
"metadata": {
|
690 |
+
"id": "0DwPYBnLEChh"
|
691 |
+
}
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"cell_type": "code",
|
695 |
+
"source": [
|
696 |
+
"# Installing dependencies for Llama\n",
|
697 |
+
"!pip install transformers accelerate sentencepiece huggingface_hub tiktoken torchtune tokenizers snakeviz lm_eval==0.4.5 blobfile"
|
698 |
+
],
|
699 |
+
"metadata": {
|
700 |
+
"colab": {
|
701 |
+
"base_uri": "https://localhost:8080/"
|
702 |
+
},
|
703 |
+
"collapsed": true,
|
704 |
+
"id": "vhSLDN0sDp9-",
|
705 |
+
"outputId": "002a1ee5-8dc9-4f92-bb50-091a16132d06"
|
706 |
+
},
|
707 |
+
"execution_count": 2,
|
708 |
+
"outputs": [
|
709 |
+
{
|
710 |
+
"output_type": "stream",
|
711 |
+
"name": "stdout",
|
712 |
+
"text": [
|
713 |
+
"Requirement already satisfied: transformers in /usr/local/lib/python3.11/dist-packages (4.50.3)\n",
|
714 |
+
"Requirement already satisfied: accelerate in /usr/local/lib/python3.11/dist-packages (1.5.2)\n",
|
715 |
+
"Requirement already satisfied: sentencepiece in /usr/local/lib/python3.11/dist-packages (0.2.0)\n",
|
716 |
+
"Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.11/dist-packages (0.30.1)\n",
|
717 |
+
"Requirement already satisfied: tiktoken in /usr/local/lib/python3.11/dist-packages (0.9.0)\n",
|
718 |
+
"Requirement already satisfied: torchtune in /usr/local/lib/python3.11/dist-packages (0.6.1)\n",
|
719 |
+
"Requirement already satisfied: tokenizers in /usr/local/lib/python3.11/dist-packages (0.21.1)\n",
|
720 |
+
"Requirement already satisfied: snakeviz in /usr/local/lib/python3.11/dist-packages (2.2.2)\n",
|
721 |
+
"Requirement already satisfied: lm_eval==0.4.5 in /usr/local/lib/python3.11/dist-packages (0.4.5)\n",
|
722 |
+
"Requirement already satisfied: blobfile in /usr/local/lib/python3.11/dist-packages (3.0.0)\n",
|
723 |
+
"Requirement already satisfied: evaluate in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (0.4.3)\n",
|
724 |
+
"Requirement already satisfied: datasets>=2.16.0 in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (3.5.0)\n",
|
725 |
+
"Requirement already satisfied: jsonlines in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (4.0.0)\n",
|
726 |
+
"Requirement already satisfied: numexpr in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (2.10.2)\n",
|
727 |
+
"Requirement already satisfied: peft>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (0.14.0)\n",
|
728 |
+
"Requirement already satisfied: pybind11>=2.6.2 in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (2.13.6)\n",
|
729 |
+
"Requirement already satisfied: pytablewriter in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (1.2.1)\n",
|
730 |
+
"Requirement already satisfied: rouge-score>=0.0.4 in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (0.1.2)\n",
|
731 |
+
"Requirement already satisfied: sacrebleu>=1.5.0 in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (2.5.1)\n",
|
732 |
+
"Requirement already satisfied: scikit-learn>=0.24.1 in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (1.6.1)\n",
|
733 |
+
"Requirement already satisfied: sqlitedict in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (2.1.0)\n",
|
734 |
+
"Requirement already satisfied: torch>=1.8 in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (2.7.0+cpu)\n",
|
735 |
+
"Requirement already satisfied: tqdm-multiprocess in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (0.0.11)\n",
|
736 |
+
"Requirement already satisfied: zstandard in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (0.23.0)\n",
|
737 |
+
"Requirement already satisfied: dill in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (0.3.8)\n",
|
738 |
+
"Requirement already satisfied: word2number in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (1.1)\n",
|
739 |
+
"Requirement already satisfied: more-itertools in /usr/local/lib/python3.11/dist-packages (from lm_eval==0.4.5) (10.6.0)\n",
|
740 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from transformers) (3.18.0)\n",
|
741 |
+
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from transformers) (2.0.2)\n",
|
742 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from transformers) (24.2)\n",
|
743 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from transformers) (6.0.2)\n",
|
744 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers) (2024.11.6)\n",
|
745 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from transformers) (2.32.3)\n",
|
746 |
+
"Requirement already satisfied: safetensors>=0.4.3 in /usr/local/lib/python3.11/dist-packages (from transformers) (0.5.3)\n",
|
747 |
+
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.11/dist-packages (from transformers) (4.67.1)\n",
|
748 |
+
"Requirement already satisfied: psutil in /usr/local/lib/python3.11/dist-packages (from accelerate) (5.9.5)\n",
|
749 |
+
"Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.11/dist-packages (from huggingface_hub) (2024.12.0)\n",
|
750 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface_hub) (4.13.1)\n",
|
751 |
+
"Requirement already satisfied: torchdata==0.11.0 in /usr/local/lib/python3.11/dist-packages (from torchtune) (0.11.0)\n",
|
752 |
+
"Requirement already satisfied: kagglehub in /usr/local/lib/python3.11/dist-packages (from torchtune) (0.3.11)\n",
|
753 |
+
"Requirement already satisfied: omegaconf in /usr/local/lib/python3.11/dist-packages (from torchtune) (2.3.0)\n",
|
754 |
+
"Requirement already satisfied: Pillow>=9.4.0 in /usr/local/lib/python3.11/dist-packages (from torchtune) (11.1.0)\n",
|
755 |
+
"Requirement already satisfied: urllib3>=1.25 in /usr/local/lib/python3.11/dist-packages (from torchdata==0.11.0->torchtune) (2.3.0)\n",
|
756 |
+
"Requirement already satisfied: tornado>=2.0 in /usr/local/lib/python3.11/dist-packages (from snakeviz) (6.4.2)\n",
|
757 |
+
"Requirement already satisfied: pycryptodomex>=3.8 in /usr/local/lib/python3.11/dist-packages (from blobfile) (3.22.0)\n",
|
758 |
+
"Requirement already satisfied: lxml>=4.9 in /usr/local/lib/python3.11/dist-packages (from blobfile) (5.3.1)\n",
|
759 |
+
"Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.0->lm_eval==0.4.5) (18.1.0)\n",
|
760 |
+
"Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.0->lm_eval==0.4.5) (2.2.2)\n",
|
761 |
+
"Requirement already satisfied: xxhash in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.0->lm_eval==0.4.5) (3.5.0)\n",
|
762 |
+
"Requirement already satisfied: multiprocess<0.70.17 in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.0->lm_eval==0.4.5) (0.70.16)\n",
|
763 |
+
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.11/dist-packages (from datasets>=2.16.0->lm_eval==0.4.5) (3.11.15)\n",
|
764 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->transformers) (3.4.1)\n",
|
765 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->transformers) (3.10)\n",
|
766 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->transformers) (2025.1.31)\n",
|
767 |
+
"Requirement already satisfied: absl-py in /usr/local/lib/python3.11/dist-packages (from rouge-score>=0.0.4->lm_eval==0.4.5) (1.4.0)\n",
|
768 |
+
"Requirement already satisfied: nltk in /usr/local/lib/python3.11/dist-packages (from rouge-score>=0.0.4->lm_eval==0.4.5) (3.9.1)\n",
|
769 |
+
"Requirement already satisfied: six>=1.14.0 in /usr/local/lib/python3.11/dist-packages (from rouge-score>=0.0.4->lm_eval==0.4.5) (1.17.0)\n",
|
770 |
+
"Requirement already satisfied: portalocker in /usr/local/lib/python3.11/dist-packages (from sacrebleu>=1.5.0->lm_eval==0.4.5) (3.1.1)\n",
|
771 |
+
"Requirement already satisfied: tabulate>=0.8.9 in /usr/local/lib/python3.11/dist-packages (from sacrebleu>=1.5.0->lm_eval==0.4.5) (0.9.0)\n",
|
772 |
+
"Requirement already satisfied: colorama in /usr/local/lib/python3.11/dist-packages (from sacrebleu>=1.5.0->lm_eval==0.4.5) (0.4.6)\n",
|
773 |
+
"Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn>=0.24.1->lm_eval==0.4.5) (1.14.1)\n",
|
774 |
+
"Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn>=0.24.1->lm_eval==0.4.5) (1.4.2)\n",
|
775 |
+
"Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn>=0.24.1->lm_eval==0.4.5) (3.6.0)\n",
|
776 |
+
"Requirement already satisfied: sympy>=1.13.3 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8->lm_eval==0.4.5) (1.13.3)\n",
|
777 |
+
"Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=1.8->lm_eval==0.4.5) (3.4.2)\n",
|
778 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=1.8->lm_eval==0.4.5) (3.1.6)\n",
|
779 |
+
"Requirement already satisfied: hf-transfer>=0.1.4 in /usr/local/lib/python3.11/dist-packages (from huggingface_hub[hf_transfer]->torchtune) (0.1.9)\n",
|
780 |
+
"Requirement already satisfied: attrs>=19.2.0 in /usr/local/lib/python3.11/dist-packages (from jsonlines->lm_eval==0.4.5) (25.3.0)\n",
|
781 |
+
"Requirement already satisfied: antlr4-python3-runtime==4.9.* in /usr/local/lib/python3.11/dist-packages (from omegaconf->torchtune) (4.9.3)\n",
|
782 |
+
"Requirement already satisfied: setuptools>=38.3.0 in /usr/local/lib/python3.11/dist-packages (from pytablewriter->lm_eval==0.4.5) (75.2.0)\n",
|
783 |
+
"Requirement already satisfied: DataProperty<2,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from pytablewriter->lm_eval==0.4.5) (1.1.0)\n",
|
784 |
+
"Requirement already satisfied: mbstrdecoder<2,>=1.0.0 in /usr/local/lib/python3.11/dist-packages (from pytablewriter->lm_eval==0.4.5) (1.1.4)\n",
|
785 |
+
"Requirement already satisfied: pathvalidate<4,>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from pytablewriter->lm_eval==0.4.5) (3.2.3)\n",
|
786 |
+
"Requirement already satisfied: tabledata<2,>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from pytablewriter->lm_eval==0.4.5) (1.3.4)\n",
|
787 |
+
"Requirement already satisfied: tcolorpy<1,>=0.0.5 in /usr/local/lib/python3.11/dist-packages (from pytablewriter->lm_eval==0.4.5) (0.1.7)\n",
|
788 |
+
"Requirement already satisfied: typepy<2,>=1.3.2 in /usr/local/lib/python3.11/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm_eval==0.4.5) (1.3.4)\n",
|
789 |
+
"Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval==0.4.5) (2.6.1)\n",
|
790 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval==0.4.5) (1.3.2)\n",
|
791 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval==0.4.5) (1.5.0)\n",
|
792 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval==0.4.5) (6.2.0)\n",
|
793 |
+
"Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval==0.4.5) (0.3.1)\n",
|
794 |
+
"Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.11/dist-packages (from aiohttp->datasets>=2.16.0->lm_eval==0.4.5) (1.18.3)\n",
|
795 |
+
"Requirement already satisfied: chardet<6,>=3.0.4 in /usr/local/lib/python3.11/dist-packages (from mbstrdecoder<2,>=1.0.0->pytablewriter->lm_eval==0.4.5) (5.2.0)\n",
|
796 |
+
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy>=1.13.3->torch>=1.8->lm_eval==0.4.5) (1.3.0)\n",
|
797 |
+
"Requirement already satisfied: python-dateutil<3.0.0,>=2.8.0 in /usr/local/lib/python3.11/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm_eval==0.4.5) (2.8.2)\n",
|
798 |
+
"Requirement already satisfied: pytz>=2018.9 in /usr/local/lib/python3.11/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm_eval==0.4.5) (2025.2)\n",
|
799 |
+
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=1.8->lm_eval==0.4.5) (3.0.2)\n",
|
800 |
+
"Requirement already satisfied: click in /usr/local/lib/python3.11/dist-packages (from nltk->rouge-score>=0.0.4->lm_eval==0.4.5) (8.1.8)\n",
|
801 |
+
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->datasets>=2.16.0->lm_eval==0.4.5) (2025.2)\n"
|
802 |
+
]
|
803 |
+
}
|
804 |
+
]
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"cell_type": "markdown",
|
808 |
+
"source": [
|
809 |
+
"**Step 2. Download Llama 3.2 1B/3B models**"
|
810 |
+
],
|
811 |
+
"metadata": {
|
812 |
+
"id": "px0lGiHFErF_"
|
813 |
+
}
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"cell_type": "code",
|
817 |
+
"source": [
|
818 |
+
"from huggingface_hub import login\n",
|
819 |
+
"login()"
|
820 |
+
],
|
821 |
+
"metadata": {
|
822 |
+
"colab": {
|
823 |
+
"base_uri": "https://localhost:8080/",
|
824 |
+
"height": 17,
|
825 |
+
"referenced_widgets": [
|
826 |
+
"657f531df8644e42bc239babc3585643",
|
827 |
+
"d039d532f46e4f76addd8c1f477945b0",
|
828 |
+
"9e88a1f4b9c549b49781c406a0f67d47",
|
829 |
+
"ca244e54ce4f4848acfbb2c595e78982",
|
830 |
+
"176fd3b64a59444bae540a67f568fcb0",
|
831 |
+
"b7c6689aada446a088954eb89d051918",
|
832 |
+
"57fe5509178e4659a2a62fe9ad6f4ce8",
|
833 |
+
"86d98f85accf42f1b579eef91d933134",
|
834 |
+
"3c7c9ee54c4143899feb58b717824e77",
|
835 |
+
"4cd2be409f8b4e0582c94504b89ab443",
|
836 |
+
"b7e5c9a9ac4343ea92461ca6429c541a",
|
837 |
+
"bcc60e17b06e4c9192982881cf84653c",
|
838 |
+
"e6d20c110eee4a6f8811df4eece8ee9a",
|
839 |
+
"c5a4d6704a194a22a2f147e9573a3843",
|
840 |
+
"e0c8bc7243fd413ea58c683e05e40075",
|
841 |
+
"c6bb82062fbc4dea90e4d532e92eeb23",
|
842 |
+
"b44230e168064796bb9bd28b0ac92be6",
|
843 |
+
"675e215a14f94baea56c552e14425f26",
|
844 |
+
"a211b717031d4a88a31a1fc20f2a484e",
|
845 |
+
"0efbb27c57f646bcad6f2d75fe478ce9"
|
846 |
+
]
|
847 |
+
},
|
848 |
+
"id": "fKKfjA_KEDnU",
|
849 |
+
"outputId": "449ffcb4-2032-4aab-e691-d48034346a21"
|
850 |
+
},
|
851 |
+
"execution_count": 13,
|
852 |
+
"outputs": [
|
853 |
+
{
|
854 |
+
"output_type": "display_data",
|
855 |
+
"data": {
|
856 |
+
"text/plain": [
|
857 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
858 |
+
],
|
859 |
+
"application/vnd.jupyter.widget-view+json": {
|
860 |
+
"version_major": 2,
|
861 |
+
"version_minor": 0,
|
862 |
+
"model_id": "657f531df8644e42bc239babc3585643"
|
863 |
+
}
|
864 |
+
},
|
865 |
+
"metadata": {}
|
866 |
+
}
|
867 |
+
]
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"cell_type": "code",
|
871 |
+
"source": [
|
872 |
+
"!huggingface-cli download meta-llama/Llama-3.2-1B --local-dir /content/models/Llama-3.2-1B --local-dir-use-symlinks False"
|
873 |
+
],
|
874 |
+
"metadata": {
|
875 |
+
"colab": {
|
876 |
+
"base_uri": "https://localhost:8080/"
|
877 |
+
},
|
878 |
+
"collapsed": true,
|
879 |
+
"id": "JJdsEZaSEEFR",
|
880 |
+
"outputId": "c43e7769-279d-46c8-b71c-14de5cde8a3f"
|
881 |
+
},
|
882 |
+
"execution_count": 4,
|
883 |
+
"outputs": [
|
884 |
+
{
|
885 |
+
"output_type": "stream",
|
886 |
+
"name": "stdout",
|
887 |
+
"text": [
|
888 |
+
"/usr/local/lib/python3.11/dist-packages/huggingface_hub/commands/download.py:139: FutureWarning: Ignoring --local-dir-use-symlinks. Downloading to a local directory does not use symlinks anymore.\n",
|
889 |
+
" warnings.warn(\n",
|
890 |
+
"Fetching 13 files: 0% 0/13 [00:00<?, ?it/s]Downloading 'generation_config.json' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/3EVKVggOldJcKSsGjSdoUCN1AyQ=.2d73a6863086ff9d491c28e49df9fb697cd92c2b.incomplete'\n",
|
891 |
+
"Downloading 'config.json' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/8_PA_wEVGiVa2goH2H4KQOQpvVY=.83b8b2aebb1a987b3802dae75fb9470234a3aaaf.incomplete'\n",
|
892 |
+
"Downloading 'original/consolidated.00.pth' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/original/_dLw4ih-O1I9AkO57vYC89Z48Os=.cfa47fb7185ebd1c3712fff5fa04fdbb0675c1e345fc72e12f6c7b65b8da6f05.incomplete'\n",
|
893 |
+
"Downloading 'README.md' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/Xn7B-BWUGOee2Y6hCZtEhtFu4BE=.68e2028211dcbb680a836ffbab628a9628ca045e.incomplete'\n",
|
894 |
+
"Downloading 'model.safetensors' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/xGOKKLRSlIhH692hSVvI1-gpoa8=.68a2e4be76fa709455a60272fba8e512c02d81c46e6c671cc9449e374fd6809a.incomplete'\n",
|
895 |
+
"Downloading 'LICENSE.txt' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/cyBuwAu93UXke23CJCWORBYR70A=.085b47c1575cb889b7024030e60b78f54f0b8c9e.incomplete'\n",
|
896 |
+
"\n",
|
897 |
+
"consolidated.00.pth: 0% 0.00/2.47G [00:00<?, ?B/s]\u001b[ADownloading '.gitattributes' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/wPaCkH-WbT7GsmxMKKrNZTV4nSM=.a6344aac8c09253b3b630fb776ae94478aa0275b.incomplete'\n",
|
898 |
+
"\n",
|
899 |
+
"\n",
|
900 |
+
"model.safetensors: 0% 0.00/2.47G [00:00<?, ?B/s]\u001b[A\u001b[A\n",
|
901 |
+
"\n",
|
902 |
+
"\n",
|
903 |
+
"config.json: 100% 843/843 [00:00<00:00, 3.77MB/s]\n",
|
904 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/config.json\n",
|
905 |
+
"Downloading 'USE_POLICY.md' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/UcPfAI5B08awK9_TiALuc0iOThI=.ac3c5f21b9779e3da0677d6d3c587778fe3a331e.incomplete'\n",
|
906 |
+
"\n",
|
907 |
+
"\n",
|
908 |
+
"\n",
|
909 |
+
"README.md: 100% 41.2k/41.2k [00:00<00:00, 24.5MB/s]\n",
|
910 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/README.md\n",
|
911 |
+
"\n",
|
912 |
+
"\n",
|
913 |
+
"\n",
|
914 |
+
"generation_config.json: 100% 185/185 [00:00<00:00, 1.52MB/s]\n",
|
915 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/generation_config.json\n",
|
916 |
+
"\n",
|
917 |
+
"\n",
|
918 |
+
"\n",
|
919 |
+
"LICENSE.txt: 100% 7.71k/7.71k [00:00<00:00, 32.7MB/s]\n",
|
920 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/LICENSE.txt\n",
|
921 |
+
"\n",
|
922 |
+
"\n",
|
923 |
+
"\n",
|
924 |
+
".gitattributes: 100% 1.52k/1.52k [00:00<00:00, 14.1MB/s]\n",
|
925 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/.gitattributes\n",
|
926 |
+
"Fetching 13 files: 8% 1/13 [00:00<00:03, 3.44it/s]\n",
|
927 |
+
"\n",
|
928 |
+
"model.safetensors: 0% 10.5M/2.47G [00:00<00:27, 88.6MB/s]\u001b[A\u001b[A\n",
|
929 |
+
"consolidated.00.pth: 1% 21.0M/2.47G [00:00<00:17, 138MB/s]\u001b[ADownloading 'original/params.json' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/original/jqHB00sRqBVJXCrFOHz5gDS2Bg8=.e1ea21c4ff6e1905e1f42ecf8ebe0ee10a063b98.incomplete'\n",
|
930 |
+
"Downloading 'special_tokens_map.json' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/ahkChHUJFxEmOdq5GDFEmerRzCY=.cfabacc2620186cd3dd4b1dde9a37e057208636e.incomplete'\n",
|
931 |
+
"Downloading 'original/tokenizer.model' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/original/7iVfz3cUOMr-hyjiqqRDHEwVBAM=.82e9d31979e92ab929cd544440f129d9ecd797b69e327f80f17e1c50d5551b55.incomplete'\n",
|
932 |
+
"Downloading 'tokenizer.json' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/HgM_lKo9sdSCfRtVg7MMFS7EKqo=.5cc5f00a5b203e90a27a3bd60d1ec393b07971e8.incomplete'\n",
|
933 |
+
"Downloading 'tokenizer_config.json' to '/content/models/Llama-3.2-1B/.cache/huggingface/download/vzaExXFZNBay89bvlQv-ZcI6BTg=.cb9ec25536e44d86778b10509d3e5bdca459a5cf.incomplete'\n",
|
934 |
+
"\n",
|
935 |
+
"\n",
|
936 |
+
"model.safetensors: 1% 31.5M/2.47G [00:00<00:16, 151MB/s] \u001b[A\u001b[A\n",
|
937 |
+
"\n",
|
938 |
+
"\n",
|
939 |
+
"tokenizer.model: 0% 0.00/2.18M [00:00<?, ?B/s]\u001b[A\u001b[A\u001b[A\n",
|
940 |
+
"\n",
|
941 |
+
"\n",
|
942 |
+
"\n",
|
943 |
+
"params.json: 100% 220/220 [00:00<00:00, 1.72MB/s]\n",
|
944 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/original/params.json\n",
|
945 |
+
"\n",
|
946 |
+
"consolidated.00.pth: 2% 52.4M/2.47G [00:00<00:12, 193MB/s]\u001b[A\n",
|
947 |
+
"\n",
|
948 |
+
"\n",
|
949 |
+
"\n",
|
950 |
+
"special_tokens_map.json: 100% 301/301 [00:00<00:00, 1.77MB/s]\n",
|
951 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/special_tokens_map.json\n",
|
952 |
+
"tokenizer.model: 100% 2.18M/2.18M [00:00<00:00, 32.7MB/s]\n",
|
953 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/original/tokenizer.model\n",
|
954 |
+
"\n",
|
955 |
+
"\n",
|
956 |
+
"\n",
|
957 |
+
"USE_POLICY.md: 100% 6.02k/6.02k [00:00<00:00, 24.0MB/s]\n",
|
958 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/USE_POLICY.md\n",
|
959 |
+
"Fetching 13 files: 31% 4/13 [00:00<00:00, 9.43it/s]\n",
|
960 |
+
"\n",
|
961 |
+
"\n",
|
962 |
+
"tokenizer.json: 0% 0.00/9.09M [00:00<?, ?B/s]\u001b[A\u001b[A\u001b[A\n",
|
963 |
+
"\n",
|
964 |
+
"\n",
|
965 |
+
"\n",
|
966 |
+
"tokenizer_config.json: 100% 50.5k/50.5k [00:00<00:00, 8.61MB/s]\n",
|
967 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/tokenizer_config.json\n",
|
968 |
+
"\n",
|
969 |
+
"\n",
|
970 |
+
"model.safetensors: 3% 62.9M/2.47G [00:00<00:13, 184MB/s]\u001b[A\u001b[A\n",
|
971 |
+
"consolidated.00.pth: 3% 83.9M/2.47G [00:00<00:11, 213MB/s]\u001b[A\n",
|
972 |
+
"\n",
|
973 |
+
"model.safetensors: 3% 83.9M/2.47G [00:00<00:12, 192MB/s]\u001b[A\u001b[A\n",
|
974 |
+
"\n",
|
975 |
+
"model.safetensors: 4% 105M/2.47G [00:00<00:12, 195MB/s] \u001b[A\u001b[A\n",
|
976 |
+
"consolidated.00.pth: 5% 115M/2.47G [00:00<00:11, 199MB/s] \u001b[A\n",
|
977 |
+
"consolidated.00.pth: 6% 136M/2.47G [00:00<00:11, 202MB/s]\u001b[A\n",
|
978 |
+
"\n",
|
979 |
+
"model.safetensors: 5% 126M/2.47G [00:00<00:11, 197MB/s]\u001b[A\u001b[A\n",
|
980 |
+
"consolidated.00.pth: 6% 157M/2.47G [00:00<00:11, 199MB/s]\u001b[A\n",
|
981 |
+
"\n",
|
982 |
+
"\n",
|
983 |
+
"tokenizer.json: 100% 9.09M/9.09M [00:00<00:00, 17.7MB/s]\u001b[A\u001b[A\u001b[A\n",
|
984 |
+
"\n",
|
985 |
+
"tokenizer.json: 100% 9.09M/9.09M [00:00<00:00, 17.3MB/s]\n",
|
986 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/tokenizer.json\n",
|
987 |
+
"\n",
|
988 |
+
"consolidated.00.pth: 8% 189M/2.47G [00:00<00:10, 212MB/s]\u001b[A\n",
|
989 |
+
"\n",
|
990 |
+
"model.safetensors: 7% 178M/2.47G [00:00<00:11, 202MB/s]\u001b[A\u001b[A\n",
|
991 |
+
"\n",
|
992 |
+
"model.safetensors: 8% 199M/2.47G [00:01<00:18, 124MB/s]\u001b[A\u001b[A\n",
|
993 |
+
"consolidated.00.pth: 9% 220M/2.47G [00:01<00:16, 139MB/s]\u001b[A\n",
|
994 |
+
"\n",
|
995 |
+
"model.safetensors: 9% 220M/2.47G [00:01<00:18, 122MB/s]\u001b[A\u001b[A\n",
|
996 |
+
"consolidated.00.pth: 10% 241M/2.47G [00:01<00:17, 130MB/s]\u001b[A\n",
|
997 |
+
"\n",
|
998 |
+
"model.safetensors: 10% 241M/2.47G [00:01<00:20, 110MB/s]\u001b[A\u001b[A\n",
|
999 |
+
"consolidated.00.pth: 11% 262M/2.47G [00:01<00:19, 112MB/s]\u001b[A\n",
|
1000 |
+
"\n",
|
1001 |
+
"model.safetensors: 11% 262M/2.47G [00:01<00:20, 106MB/s]\u001b[A\u001b[A\n",
|
1002 |
+
"consolidated.00.pth: 11% 283M/2.47G [00:01<00:19, 115MB/s]\u001b[A\n",
|
1003 |
+
"\n",
|
1004 |
+
"model.safetensors: 11% 283M/2.47G [00:01<00:17, 123MB/s]\u001b[A\u001b[A\n",
|
1005 |
+
"consolidated.00.pth: 13% 315M/2.47G [00:05<01:37, 22.1MB/s]\u001b[A\n",
|
1006 |
+
"\n",
|
1007 |
+
"model.safetensors: 12% 304M/2.47G [00:05<01:54, 18.9MB/s]\u001b[A\u001b[A\n",
|
1008 |
+
"consolidated.00.pth: 14% 346M/2.47G [00:05<01:05, 32.3MB/s]\u001b[A\n",
|
1009 |
+
"\n",
|
1010 |
+
"model.safetensors: 14% 336M/2.47G [00:05<01:11, 29.7MB/s]\u001b[A\u001b[A\n",
|
1011 |
+
"consolidated.00.pth: 15% 367M/2.47G [00:05<00:51, 40.8MB/s]\u001b[A\n",
|
1012 |
+
"\n",
|
1013 |
+
"model.safetensors: 14% 357M/2.47G [00:05<00:54, 38.6MB/s]\u001b[A\u001b[A\n",
|
1014 |
+
"consolidated.00.pth: 16% 388M/2.47G [00:05<00:41, 50.5MB/s]\u001b[A\n",
|
1015 |
+
"\n",
|
1016 |
+
"model.safetensors: 15% 377M/2.47G [00:05<00:43, 48.6MB/s]\u001b[A\u001b[A\n",
|
1017 |
+
"\n",
|
1018 |
+
"model.safetensors: 16% 398M/2.47G [00:05<00:33, 61.9MB/s]\u001b[A\u001b[A\n",
|
1019 |
+
"consolidated.00.pth: 17% 409M/2.47G [00:05<00:33, 61.9MB/s]\u001b[A\n",
|
1020 |
+
"\n",
|
1021 |
+
"model.safetensors: 17% 419M/2.47G [00:05<00:26, 77.6MB/s]\u001b[A\u001b[A\n",
|
1022 |
+
"consolidated.00.pth: 18% 440M/2.47G [00:05<00:25, 80.5MB/s]\u001b[A\n",
|
1023 |
+
"\n",
|
1024 |
+
"model.safetensors: 18% 440M/2.47G [00:06<00:23, 87.0MB/s]\u001b[A\u001b[A\n",
|
1025 |
+
"consolidated.00.pth: 19% 472M/2.47G [00:06<00:19, 101MB/s] \u001b[A\n",
|
1026 |
+
"\n",
|
1027 |
+
"model.safetensors: 19% 461M/2.47G [00:06<00:19, 105MB/s] \u001b[A\u001b[A\n",
|
1028 |
+
"consolidated.00.pth: 20% 493M/2.47G [00:06<00:17, 114MB/s]\u001b[A\n",
|
1029 |
+
"\n",
|
1030 |
+
"model.safetensors: 20% 482M/2.47G [00:06<00:16, 119MB/s]\u001b[A\u001b[A\n",
|
1031 |
+
"consolidated.00.pth: 21% 514M/2.47G [00:06<00:15, 129MB/s]\u001b[A\n",
|
1032 |
+
"\n",
|
1033 |
+
"model.safetensors: 20% 503M/2.47G [00:06<00:14, 137MB/s]\u001b[A\u001b[A\n",
|
1034 |
+
"consolidated.00.pth: 22% 535M/2.47G [00:06<00:13, 143MB/s]\u001b[A\n",
|
1035 |
+
"\n",
|
1036 |
+
"model.safetensors: 21% 524M/2.47G [00:06<00:12, 150MB/s]\u001b[A\u001b[A\n",
|
1037 |
+
"\n",
|
1038 |
+
"model.safetensors: 22% 545M/2.47G [00:06<00:12, 152MB/s]\u001b[A\u001b[A\n",
|
1039 |
+
"consolidated.00.pth: 22% 556M/2.47G [00:06<00:14, 136MB/s]\u001b[A\n",
|
1040 |
+
"\n",
|
1041 |
+
"model.safetensors: 23% 566M/2.47G [00:06<00:13, 138MB/s]\u001b[A\u001b[A\n",
|
1042 |
+
"consolidated.00.pth: 23% 577M/2.47G [00:06<00:14, 128MB/s]\u001b[A\n",
|
1043 |
+
"\n",
|
1044 |
+
"model.safetensors: 24% 587M/2.47G [00:06<00:13, 144MB/s]\u001b[A\u001b[A\n",
|
1045 |
+
"consolidated.00.pth: 24% 598M/2.47G [00:06<00:14, 129MB/s]\u001b[A\n",
|
1046 |
+
"\n",
|
1047 |
+
"model.safetensors: 25% 608M/2.47G [00:07<00:14, 129MB/s]\u001b[A\u001b[A\n",
|
1048 |
+
"consolidated.00.pth: 25% 619M/2.47G [00:07<00:14, 125MB/s]\u001b[A\n",
|
1049 |
+
"\n",
|
1050 |
+
"model.safetensors: 25% 629M/2.47G [00:07<00:13, 133MB/s]\u001b[A\u001b[A\n",
|
1051 |
+
"consolidated.00.pth: 26% 640M/2.47G [00:07<00:15, 122MB/s]\u001b[A\n",
|
1052 |
+
"\n",
|
1053 |
+
"model.safetensors: 26% 650M/2.47G [00:07<00:15, 121MB/s]\u001b[A\u001b[A\n",
|
1054 |
+
"consolidated.00.pth: 27% 661M/2.47G [00:07<00:15, 120MB/s]\u001b[A\n",
|
1055 |
+
"\n",
|
1056 |
+
"model.safetensors: 27% 671M/2.47G [00:07<00:14, 124MB/s]\u001b[A\u001b[A\n",
|
1057 |
+
"consolidated.00.pth: 28% 682M/2.47G [00:07<00:14, 127MB/s]\u001b[A\n",
|
1058 |
+
"\n",
|
1059 |
+
"model.safetensors: 28% 692M/2.47G [00:07<00:13, 130MB/s]\u001b[A\u001b[A\n",
|
1060 |
+
"consolidated.00.pth: 28% 703M/2.47G [00:07<00:13, 132MB/s]\u001b[A\n",
|
1061 |
+
"\n",
|
1062 |
+
"model.safetensors: 29% 713M/2.47G [00:07<00:13, 133MB/s]\u001b[A\u001b[A\n",
|
1063 |
+
"consolidated.00.pth: 29% 724M/2.47G [00:07<00:13, 130MB/s]\u001b[A\n",
|
1064 |
+
"\n",
|
1065 |
+
"model.safetensors: 30% 734M/2.47G [00:08<00:13, 128MB/s]\u001b[A\u001b[A\n",
|
1066 |
+
"consolidated.00.pth: 30% 744M/2.47G [00:08<00:13, 129MB/s]\u001b[A\n",
|
1067 |
+
"consolidated.00.pth: 31% 765M/2.47G [00:08<00:12, 138MB/s]\u001b[A\n",
|
1068 |
+
"\n",
|
1069 |
+
"model.safetensors: 31% 755M/2.47G [00:08<00:14, 120MB/s]\u001b[A\u001b[A\n",
|
1070 |
+
"consolidated.00.pth: 32% 786M/2.47G [00:08<00:15, 112MB/s]\u001b[A\n",
|
1071 |
+
"\n",
|
1072 |
+
"model.safetensors: 31% 776M/2.47G [00:08<00:15, 108MB/s]\u001b[A\u001b[A\n",
|
1073 |
+
"consolidated.00.pth: 33% 807M/2.47G [00:08<00:15, 107MB/s]\u001b[A\n",
|
1074 |
+
"\n",
|
1075 |
+
"model.safetensors: 32% 797M/2.47G [00:08<00:16, 104MB/s]\u001b[A\u001b[A\n",
|
1076 |
+
"\n",
|
1077 |
+
"model.safetensors: 33% 818M/2.47G [00:08<00:13, 119MB/s]\u001b[A\u001b[A\n",
|
1078 |
+
"consolidated.00.pth: 34% 839M/2.47G [00:08<00:12, 127MB/s]\u001b[A\n",
|
1079 |
+
"\n",
|
1080 |
+
"model.safetensors: 34% 839M/2.47G [00:09<00:13, 121MB/s]\u001b[A\u001b[A\n",
|
1081 |
+
"consolidated.00.pth: 35% 860M/2.47G [00:09<00:11, 135MB/s]\u001b[A\n",
|
1082 |
+
"\n",
|
1083 |
+
"model.safetensors: 35% 860M/2.47G [00:09<00:11, 136MB/s]\u001b[A\u001b[A\n",
|
1084 |
+
"consolidated.00.pth: 36% 881M/2.47G [00:09<00:10, 145MB/s]\u001b[A\n",
|
1085 |
+
"\n",
|
1086 |
+
"model.safetensors: 36% 881M/2.47G [00:09<00:11, 134MB/s]\u001b[A\u001b[A\n",
|
1087 |
+
"consolidated.00.pth: 36% 902M/2.47G [00:09<00:11, 133MB/s]\u001b[A\n",
|
1088 |
+
"\n",
|
1089 |
+
"model.safetensors: 36% 902M/2.47G [00:09<00:11, 134MB/s]\u001b[A\u001b[A\n",
|
1090 |
+
"consolidated.00.pth: 37% 923M/2.47G [00:09<00:11, 136MB/s]\u001b[A\n",
|
1091 |
+
"\n",
|
1092 |
+
"model.safetensors: 37% 923M/2.47G [00:09<00:13, 117MB/s]\u001b[A\u001b[A\n",
|
1093 |
+
"consolidated.00.pth: 38% 944M/2.47G [00:09<00:12, 118MB/s]\u001b[A\n",
|
1094 |
+
"\n",
|
1095 |
+
"model.safetensors: 38% 944M/2.47G [00:09<00:12, 118MB/s]\u001b[A\u001b[A\n",
|
1096 |
+
"consolidated.00.pth: 39% 965M/2.47G [00:09<00:12, 120MB/s]\u001b[A\n",
|
1097 |
+
"\n",
|
1098 |
+
"model.safetensors: 39% 965M/2.47G [00:10<00:11, 134MB/s]\u001b[A\u001b[A\n",
|
1099 |
+
"consolidated.00.pth: 40% 986M/2.47G [00:10<00:11, 125MB/s]\u001b[A\n",
|
1100 |
+
"\n",
|
1101 |
+
"model.safetensors: 40% 986M/2.47G [00:10<00:11, 133MB/s]\u001b[A\u001b[A\n",
|
1102 |
+
"consolidated.00.pth: 41% 1.01G/2.47G [00:10<00:10, 139MB/s]\u001b[A\n",
|
1103 |
+
"\n",
|
1104 |
+
"model.safetensors: 41% 1.01G/2.47G [00:10<00:11, 122MB/s]\u001b[A\u001b[A\n",
|
1105 |
+
"consolidated.00.pth: 42% 1.03G/2.47G [00:10<00:11, 121MB/s]\u001b[A\n",
|
1106 |
+
"\n",
|
1107 |
+
"model.safetensors: 42% 1.03G/2.47G [00:10<00:11, 131MB/s]\u001b[A\u001b[A\n",
|
1108 |
+
"consolidated.00.pth: 42% 1.05G/2.47G [00:10<00:10, 132MB/s]\u001b[A\n",
|
1109 |
+
"\n",
|
1110 |
+
"model.safetensors: 42% 1.05G/2.47G [00:10<00:11, 129MB/s]\u001b[A\u001b[A\n",
|
1111 |
+
"consolidated.00.pth: 43% 1.07G/2.47G [00:10<00:11, 121MB/s]\u001b[A\n",
|
1112 |
+
"\n",
|
1113 |
+
"model.safetensors: 43% 1.07G/2.47G [00:10<00:10, 136MB/s]\u001b[A\u001b[A\n",
|
1114 |
+
"consolidated.00.pth: 44% 1.09G/2.47G [00:10<00:10, 133MB/s]\u001b[A\n",
|
1115 |
+
"\n",
|
1116 |
+
"model.safetensors: 44% 1.09G/2.47G [00:11<00:11, 120MB/s]\u001b[A\u001b[A\n",
|
1117 |
+
"consolidated.00.pth: 45% 1.11G/2.47G [00:11<00:10, 128MB/s]\u001b[A\n",
|
1118 |
+
"\n",
|
1119 |
+
"model.safetensors: 45% 1.11G/2.47G [00:11<00:11, 123MB/s]\u001b[A\u001b[A\n",
|
1120 |
+
"consolidated.00.pth: 46% 1.13G/2.47G [00:11<00:11, 115MB/s]\u001b[A\n",
|
1121 |
+
"\n",
|
1122 |
+
"model.safetensors: 46% 1.13G/2.47G [00:11<00:11, 119MB/s]\u001b[A\u001b[A\n",
|
1123 |
+
"consolidated.00.pth: 47% 1.15G/2.47G [00:11<00:10, 121MB/s]\u001b[A\n",
|
1124 |
+
"\n",
|
1125 |
+
"model.safetensors: 47% 1.15G/2.47G [00:11<00:10, 132MB/s]\u001b[A\u001b[A\n",
|
1126 |
+
"consolidated.00.pth: 48% 1.17G/2.47G [00:11<00:09, 131MB/s]\u001b[A\n",
|
1127 |
+
"\n",
|
1128 |
+
"model.safetensors: 48% 1.17G/2.47G [00:11<00:09, 131MB/s]\u001b[A\u001b[A\n",
|
1129 |
+
"consolidated.00.pth: 48% 1.20G/2.47G [00:11<00:11, 113MB/s]\u001b[A\n",
|
1130 |
+
"\n",
|
1131 |
+
"model.safetensors: 48% 1.20G/2.47G [00:11<00:10, 119MB/s]\u001b[A\u001b[A\n",
|
1132 |
+
"consolidated.00.pth: 49% 1.22G/2.47G [00:11<00:10, 125MB/s]\u001b[A\n",
|
1133 |
+
"\n",
|
1134 |
+
"model.safetensors: 49% 1.22G/2.47G [00:12<00:10, 122MB/s]\u001b[A\u001b[A\n",
|
1135 |
+
"consolidated.00.pth: 50% 1.24G/2.47G [00:12<00:10, 121MB/s]\u001b[A\n",
|
1136 |
+
"\n",
|
1137 |
+
"model.safetensors: 50% 1.24G/2.47G [00:12<00:09, 125MB/s]\u001b[A\u001b[A\n",
|
1138 |
+
"consolidated.00.pth: 51% 1.26G/2.47G [00:12<00:09, 134MB/s]\u001b[A\n",
|
1139 |
+
"\n",
|
1140 |
+
"model.safetensors: 51% 1.26G/2.47G [00:12<00:09, 133MB/s]\u001b[A\u001b[A\n",
|
1141 |
+
"consolidated.00.pth: 52% 1.28G/2.47G [00:12<00:09, 122MB/s]\u001b[A\n",
|
1142 |
+
"\n",
|
1143 |
+
"model.safetensors: 52% 1.28G/2.47G [00:12<00:09, 122MB/s]\u001b[A\u001b[A\n",
|
1144 |
+
"consolidated.00.pth: 53% 1.30G/2.47G [00:12<00:09, 126MB/s]\u001b[A\n",
|
1145 |
+
"\n",
|
1146 |
+
"model.safetensors: 53% 1.30G/2.47G [00:12<00:09, 129MB/s]\u001b[A\u001b[A\n",
|
1147 |
+
"consolidated.00.pth: 53% 1.32G/2.47G [00:12<00:08, 130MB/s]\u001b[A\n",
|
1148 |
+
"\n",
|
1149 |
+
"model.safetensors: 53% 1.32G/2.47G [00:12<00:09, 126MB/s]\u001b[A\u001b[A\n",
|
1150 |
+
"consolidated.00.pth: 54% 1.34G/2.47G [00:12<00:08, 127MB/s]\u001b[A\n",
|
1151 |
+
"\n",
|
1152 |
+
"model.safetensors: 54% 1.34G/2.47G [00:13<00:09, 118MB/s]\u001b[A\u001b[A\n",
|
1153 |
+
"consolidated.00.pth: 55% 1.36G/2.47G [00:13<00:08, 125MB/s]\u001b[A\n",
|
1154 |
+
"\n",
|
1155 |
+
"model.safetensors: 55% 1.36G/2.47G [00:13<00:08, 126MB/s]\u001b[A\u001b[A\n",
|
1156 |
+
"consolidated.00.pth: 56% 1.38G/2.47G [00:13<00:08, 127MB/s]\u001b[A\n",
|
1157 |
+
"\n",
|
1158 |
+
"model.safetensors: 56% 1.38G/2.47G [00:13<00:09, 120MB/s]\u001b[A\u001b[A\n",
|
1159 |
+
"consolidated.00.pth: 57% 1.41G/2.47G [00:13<00:08, 126MB/s]\u001b[A\n",
|
1160 |
+
"\n",
|
1161 |
+
"model.safetensors: 57% 1.41G/2.47G [00:15<00:39, 27.3MB/s]\u001b[A\u001b[A\n",
|
1162 |
+
"consolidated.00.pth: 58% 1.43G/2.47G [00:15<00:37, 27.6MB/s]\u001b[A\n",
|
1163 |
+
"consolidated.00.pth: 59% 1.46G/2.47G [00:15<00:23, 42.7MB/s]\u001b[A\n",
|
1164 |
+
"\n",
|
1165 |
+
"model.safetensors: 58% 1.44G/2.47G [00:15<00:24, 41.8MB/s]\u001b[A\u001b[A\n",
|
1166 |
+
"consolidated.00.pth: 60% 1.49G/2.47G [00:15<00:16, 59.9MB/s]\u001b[A\n",
|
1167 |
+
"\n",
|
1168 |
+
"model.safetensors: 59% 1.47G/2.47G [00:15<00:17, 58.0MB/s]\u001b[A\u001b[A\n",
|
1169 |
+
"consolidated.00.pth: 61% 1.51G/2.47G [00:15<00:13, 71.8MB/s]\u001b[A\n",
|
1170 |
+
"\n",
|
1171 |
+
"model.safetensors: 60% 1.49G/2.47G [00:15<00:14, 69.7MB/s]\u001b[A\u001b[A\n",
|
1172 |
+
"\n",
|
1173 |
+
"model.safetensors: 61% 1.51G/2.47G [00:16<00:11, 84.3MB/s]\u001b[A\u001b[A\n",
|
1174 |
+
"consolidated.00.pth: 62% 1.54G/2.47G [00:16<00:10, 92.9MB/s]\u001b[A\n",
|
1175 |
+
"\n",
|
1176 |
+
"model.safetensors: 62% 1.53G/2.47G [00:16<00:09, 100MB/s] \u001b[A\u001b[A\n",
|
1177 |
+
"consolidated.00.pth: 63% 1.56G/2.47G [00:16<00:08, 108MB/s] \u001b[A\n",
|
1178 |
+
"\n",
|
1179 |
+
"model.safetensors: 63% 1.55G/2.47G [00:16<00:07, 117MB/s]\u001b[A\u001b[A\n",
|
1180 |
+
"consolidated.00.pth: 64% 1.59G/2.47G [00:16<00:06, 135MB/s]\u001b[A\n",
|
1181 |
+
"consolidated.00.pth: 65% 1.61G/2.47G [00:16<00:06, 127MB/s]\u001b[A\n",
|
1182 |
+
"\n",
|
1183 |
+
"model.safetensors: 64% 1.58G/2.47G [00:16<00:07, 118MB/s]\u001b[A\u001b[A\n",
|
1184 |
+
"\n",
|
1185 |
+
"model.safetensors: 65% 1.60G/2.47G [00:16<00:06, 132MB/s]\u001b[A\u001b[A\n",
|
1186 |
+
"consolidated.00.pth: 67% 1.65G/2.47G [00:16<00:05, 146MB/s]\u001b[A\n",
|
1187 |
+
"\n",
|
1188 |
+
"model.safetensors: 66% 1.63G/2.47G [00:16<00:06, 128MB/s]\u001b[A\u001b[A\n",
|
1189 |
+
"consolidated.00.pth: 67% 1.67G/2.47G [00:16<00:05, 141MB/s]\u001b[A\n",
|
1190 |
+
"consolidated.00.pth: 68% 1.69G/2.47G [00:16<00:05, 150MB/s]\u001b[A\n",
|
1191 |
+
"\n",
|
1192 |
+
"model.safetensors: 67% 1.65G/2.47G [00:16<00:06, 130MB/s]\u001b[A\u001b[A\n",
|
1193 |
+
"consolidated.00.pth: 69% 1.71G/2.47G [00:17<00:05, 135MB/s]\u001b[A\n",
|
1194 |
+
"\n",
|
1195 |
+
"model.safetensors: 67% 1.67G/2.47G [00:17<00:06, 122MB/s]\u001b[A\u001b[A\n",
|
1196 |
+
"consolidated.00.pth: 70% 1.73G/2.47G [00:17<00:05, 132MB/s]\u001b[A\n",
|
1197 |
+
"\n",
|
1198 |
+
"model.safetensors: 68% 1.69G/2.47G [00:17<00:06, 122MB/s]\u001b[A\u001b[A\n",
|
1199 |
+
"consolidated.00.pth: 71% 1.75G/2.47G [00:17<00:05, 135MB/s]\u001b[A\n",
|
1200 |
+
"\n",
|
1201 |
+
"model.safetensors: 69% 1.71G/2.47G [00:17<00:06, 125MB/s]\u001b[A\u001b[A\n",
|
1202 |
+
"consolidated.00.pth: 72% 1.77G/2.47G [00:17<00:05, 125MB/s]\u001b[A\n",
|
1203 |
+
"\n",
|
1204 |
+
"model.safetensors: 70% 1.73G/2.47G [00:17<00:05, 127MB/s]\u001b[A\u001b[A\n",
|
1205 |
+
"consolidated.00.pth: 73% 1.79G/2.47G [00:17<00:05, 119MB/s]\u001b[A\n",
|
1206 |
+
"\n",
|
1207 |
+
"model.safetensors: 71% 1.75G/2.47G [00:17<00:05, 122MB/s]\u001b[A\u001b[A\n",
|
1208 |
+
"\n",
|
1209 |
+
"model.safetensors: 72% 1.77G/2.47G [00:17<00:05, 133MB/s]\u001b[A\u001b[A\n",
|
1210 |
+
"consolidated.00.pth: 74% 1.82G/2.47G [00:18<00:04, 136MB/s]\u001b[A\n",
|
1211 |
+
"\n",
|
1212 |
+
"model.safetensors: 73% 1.79G/2.47G [00:18<00:05, 118MB/s]\u001b[A\u001b[A\n",
|
1213 |
+
"consolidated.00.pth: 75% 1.85G/2.47G [00:18<00:05, 117MB/s]\u001b[A\n",
|
1214 |
+
"\n",
|
1215 |
+
"model.safetensors: 73% 1.81G/2.47G [00:18<00:05, 126MB/s]\u001b[A\u001b[A\n",
|
1216 |
+
"consolidated.00.pth: 76% 1.87G/2.47G [00:18<00:05, 120MB/s]\u001b[A\n",
|
1217 |
+
"\n",
|
1218 |
+
"model.safetensors: 74% 1.84G/2.47G [00:18<00:04, 133MB/s]\u001b[A\u001b[A\n",
|
1219 |
+
"consolidated.00.pth: 76% 1.89G/2.47G [00:18<00:04, 136MB/s]\u001b[A\n",
|
1220 |
+
"\n",
|
1221 |
+
"model.safetensors: 75% 1.86G/2.47G [00:18<00:05, 114MB/s]\u001b[A\u001b[A\n",
|
1222 |
+
"consolidated.00.pth: 77% 1.91G/2.47G [00:18<00:04, 127MB/s]\u001b[A\n",
|
1223 |
+
"\n",
|
1224 |
+
"model.safetensors: 76% 1.88G/2.47G [00:18<00:04, 123MB/s]\u001b[A\u001b[A\n",
|
1225 |
+
"consolidated.00.pth: 78% 1.93G/2.47G [00:18<00:04, 131MB/s]\u001b[A\n",
|
1226 |
+
"\n",
|
1227 |
+
"model.safetensors: 77% 1.90G/2.47G [00:18<00:04, 132MB/s]\u001b[A\u001b[A\n",
|
1228 |
+
"consolidated.00.pth: 79% 1.95G/2.47G [00:19<00:04, 123MB/s]\u001b[A\n",
|
1229 |
+
"\n",
|
1230 |
+
"model.safetensors: 78% 1.92G/2.47G [00:19<00:04, 119MB/s]\u001b[A\u001b[A\n",
|
1231 |
+
"consolidated.00.pth: 80% 1.97G/2.47G [00:19<00:04, 120MB/s]\u001b[A\n",
|
1232 |
+
"\n",
|
1233 |
+
"model.safetensors: 78% 1.94G/2.47G [00:19<00:04, 128MB/s]\u001b[A\u001b[A\n",
|
1234 |
+
"consolidated.00.pth: 81% 1.99G/2.47G [00:19<00:03, 133MB/s]\u001b[A\n",
|
1235 |
+
"\n",
|
1236 |
+
"model.safetensors: 79% 1.96G/2.47G [00:19<00:04, 125MB/s]\u001b[A\u001b[A\n",
|
1237 |
+
"Fetching 13 files: 31% 4/13 [00:20<00:00, 9.43it/s]\n",
|
1238 |
+
"\n",
|
1239 |
+
"model.safetensors: 80% 1.98G/2.47G [00:21<00:17, 27.4MB/s]\u001b[A\u001b[A\n",
|
1240 |
+
"consolidated.00.pth: 82% 2.03G/2.47G [00:21<00:15, 27.8MB/s]\u001b[A\n",
|
1241 |
+
"consolidated.00.pth: 84% 2.07G/2.47G [00:21<00:09, 43.0MB/s]\u001b[A\n",
|
1242 |
+
"consolidated.00.pth: 85% 2.11G/2.47G [00:21<00:05, 68.6MB/s]\u001b[A\n",
|
1243 |
+
"\n",
|
1244 |
+
"model.safetensors: 81% 2.01G/2.47G [00:22<00:12, 37.6MB/s]\u001b[A\u001b[A\n",
|
1245 |
+
"consolidated.00.pth: 87% 2.14G/2.47G [00:22<00:03, 86.5MB/s]\u001b[A\n",
|
1246 |
+
"\n",
|
1247 |
+
"model.safetensors: 82% 2.03G/2.47G [00:22<00:09, 47.7MB/s]\u001b[A\u001b[A\n",
|
1248 |
+
"consolidated.00.pth: 87% 2.16G/2.47G [00:22<00:03, 98.3MB/s]\u001b[A\n",
|
1249 |
+
"\n",
|
1250 |
+
"model.safetensors: 83% 2.06G/2.47G [00:22<00:06, 59.9MB/s]\u001b[A\u001b[A\n",
|
1251 |
+
"consolidated.00.pth: 89% 2.19G/2.47G [00:22<00:02, 121MB/s] \u001b[A\n",
|
1252 |
+
"\n",
|
1253 |
+
"model.safetensors: 84% 2.08G/2.47G [00:22<00:05, 74.1MB/s]\u001b[A\u001b[A\n",
|
1254 |
+
"consolidated.00.pth: 90% 2.21G/2.47G [00:22<00:01, 133MB/s]\u001b[A\n",
|
1255 |
+
"\n",
|
1256 |
+
"model.safetensors: 85% 2.10G/2.47G [00:22<00:04, 88.8MB/s]\u001b[A\u001b[A\n",
|
1257 |
+
"consolidated.00.pth: 90% 2.23G/2.47G [00:22<00:01, 146MB/s]\u001b[A\n",
|
1258 |
+
"\n",
|
1259 |
+
"model.safetensors: 86% 2.12G/2.47G [00:22<00:03, 106MB/s] \u001b[A\u001b[A\n",
|
1260 |
+
"consolidated.00.pth: 92% 2.26G/2.47G [00:22<00:01, 162MB/s]\u001b[A\n",
|
1261 |
+
"\n",
|
1262 |
+
"model.safetensors: 87% 2.14G/2.47G [00:22<00:02, 120MB/s]\u001b[A\u001b[A\n",
|
1263 |
+
"consolidated.00.pth: 92% 2.29G/2.47G [00:22<00:01, 155MB/s]\u001b[A\n",
|
1264 |
+
"\n",
|
1265 |
+
"model.safetensors: 87% 2.16G/2.47G [00:22<00:02, 118MB/s]\u001b[A\u001b[A\n",
|
1266 |
+
"consolidated.00.pth: 93% 2.31G/2.47G [00:23<00:01, 142MB/s]\u001b[A\n",
|
1267 |
+
"\n",
|
1268 |
+
"model.safetensors: 88% 2.18G/2.47G [00:23<00:02, 107MB/s]\u001b[A\u001b[A\n",
|
1269 |
+
"consolidated.00.pth: 94% 2.33G/2.47G [00:23<00:01, 139MB/s]\u001b[A\n",
|
1270 |
+
"\n",
|
1271 |
+
"model.safetensors: 89% 2.20G/2.47G [00:23<00:02, 120MB/s]\u001b[A\u001b[A\n",
|
1272 |
+
"consolidated.00.pth: 95% 2.35G/2.47G [00:23<00:00, 150MB/s]\u001b[A\n",
|
1273 |
+
"\n",
|
1274 |
+
"model.safetensors: 90% 2.22G/2.47G [00:23<00:02, 120MB/s]\u001b[A\u001b[A\n",
|
1275 |
+
"consolidated.00.pth: 96% 2.37G/2.47G [00:23<00:00, 140MB/s]\u001b[A\n",
|
1276 |
+
"consolidated.00.pth: 97% 2.39G/2.47G [00:23<00:00, 143MB/s]\u001b[A\n",
|
1277 |
+
"\n",
|
1278 |
+
"model.safetensors: 91% 2.24G/2.47G [00:23<00:01, 115MB/s]\u001b[A\u001b[A\n",
|
1279 |
+
"consolidated.00.pth: 98% 2.41G/2.47G [00:25<00:02, 28.4MB/s]\u001b[A\n",
|
1280 |
+
"\n",
|
1281 |
+
"model.safetensors: 92% 2.26G/2.47G [00:25<00:07, 27.3MB/s]\u001b[A\u001b[A\n",
|
1282 |
+
"consolidated.00.pth: 99% 2.44G/2.47G [00:25<00:00, 43.4MB/s]\u001b[A\n",
|
1283 |
+
"\n",
|
1284 |
+
"model.safetensors: 93% 2.30G/2.47G [00:25<00:04, 41.8MB/s]\u001b[A\u001b[A\n",
|
1285 |
+
"consolidated.00.pth: 100% 2.47G/2.47G [00:26<00:00, 94.8MB/s]\n",
|
1286 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/original/consolidated.00.pth\n",
|
1287 |
+
"\n",
|
1288 |
+
"\n",
|
1289 |
+
"model.safetensors: 94% 2.33G/2.47G [00:26<00:02, 58.6MB/s]\u001b[A\u001b[A\n",
|
1290 |
+
"\n",
|
1291 |
+
"model.safetensors: 95% 2.36G/2.47G [00:26<00:01, 79.5MB/s]\u001b[A\u001b[A\n",
|
1292 |
+
"\n",
|
1293 |
+
"model.safetensors: 97% 2.39G/2.47G [00:26<00:00, 103MB/s] \u001b[A\u001b[A\n",
|
1294 |
+
"\n",
|
1295 |
+
"model.safetensors: 98% 2.42G/2.47G [00:26<00:00, 130MB/s]\u001b[A\u001b[A\n",
|
1296 |
+
"\n",
|
1297 |
+
"model.safetensors: 100% 2.47G/2.47G [00:26<00:00, 92.8MB/s]\n",
|
1298 |
+
"Download complete. Moving file to /content/models/Llama-3.2-1B/model.safetensors\n",
|
1299 |
+
"Fetching 13 files: 100% 13/13 [00:26<00:00, 2.06s/it]\n",
|
1300 |
+
"/content/models/Llama-3.2-1B\n"
|
1301 |
+
]
|
1302 |
+
}
|
1303 |
+
]
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"cell_type": "markdown",
|
1307 |
+
"source": [
|
1308 |
+
"**Step 3: Export to ExecuTorch**"
|
1309 |
+
],
|
1310 |
+
"metadata": {
|
1311 |
+
"id": "XLsl5STwEyEh"
|
1312 |
+
}
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"cell_type": "code",
|
1316 |
+
"source": [
|
1317 |
+
"!cd /content/; python -m executorch.examples.models.llama.export_llama \\\n",
|
1318 |
+
" --checkpoint /content/models/Llama-3.2-1B/original/consolidated.00.pth \\\n",
|
1319 |
+
" --params /content/models/Llama-3.2-1B/original/params.json \\\n",
|
1320 |
+
" -kv \\\n",
|
1321 |
+
" --use_sdpa_with_kv_cache \\\n",
|
1322 |
+
" -X \\\n",
|
1323 |
+
" -d bf16 \\\n",
|
1324 |
+
" --metadata '{\"get_bos_id\":128000, \"get_eos_ids\":[128009, 128001]}' \\\n",
|
1325 |
+
" --output_name=\"llama3_2-1B.pte\""
|
1326 |
+
],
|
1327 |
+
"metadata": {
|
1328 |
+
"colab": {
|
1329 |
+
"base_uri": "https://localhost:8080/"
|
1330 |
+
},
|
1331 |
+
"id": "gXLuFtVVEZov",
|
1332 |
+
"outputId": "5e42fab8-c2f9-44a7-9fed-cdb7115f4dfe"
|
1333 |
+
},
|
1334 |
+
"execution_count": 10,
|
1335 |
+
"outputs": [
|
1336 |
+
{
|
1337 |
+
"output_type": "stream",
|
1338 |
+
"name": "stdout",
|
1339 |
+
"text": [
|
1340 |
+
"[INFO 2025-04-10 14:22:59,732 utils.py:162] NumExpr defaulting to 2 threads.\n",
|
1341 |
+
"[INFO 2025-04-10 14:23:01,271 export_llama_lib.py:684] Applying quantizers: []\n",
|
1342 |
+
"[INFO 2025-04-10 14:23:01,545 export_llama_lib.py:649] Checkpoint dtype: torch.bfloat16\n",
|
1343 |
+
"[INFO 2025-04-10 14:23:01,545 quantized_kv_cache.py:277] Replacing KVCache with CustomKVCache. This modifies the model in place.\n",
|
1344 |
+
"[INFO 2025-04-10 14:23:01,567 custom_ops.py:34] Looking for libcustom_ops_aot_lib.so in /usr/local/lib/python3.11/dist-packages/executorch/extension/llm/custom_ops\n",
|
1345 |
+
"[INFO 2025-04-10 14:23:01,569 custom_ops.py:39] Loading custom ops library: /usr/local/lib/python3.11/dist-packages/executorch/extension/llm/custom_ops/libcustom_ops_aot_lib.so\n",
|
1346 |
+
"[INFO 2025-04-10 14:23:01,581 builder.py:173] Model after source transforms: Transformer(\n",
|
1347 |
+
" (tok_embeddings): Embedding(128256, 2048)\n",
|
1348 |
+
" (rope): Rope(\n",
|
1349 |
+
" (apply_rotary_emb): RotaryEmbedding()\n",
|
1350 |
+
" )\n",
|
1351 |
+
" (layers): ModuleList(\n",
|
1352 |
+
" (0-15): 16 x TransformerBlock(\n",
|
1353 |
+
" (attention): AttentionMHA(\n",
|
1354 |
+
" (wq): Linear(in_features=2048, out_features=2048, bias=False)\n",
|
1355 |
+
" (wk): Linear(in_features=2048, out_features=512, bias=False)\n",
|
1356 |
+
" (wv): Linear(in_features=2048, out_features=512, bias=False)\n",
|
1357 |
+
" (wo): Linear(in_features=2048, out_features=2048, bias=False)\n",
|
1358 |
+
" (rope): Rope(\n",
|
1359 |
+
" (apply_rotary_emb): RotaryEmbedding()\n",
|
1360 |
+
" )\n",
|
1361 |
+
" (kv_cache): CustomKVCache()\n",
|
1362 |
+
" (SDPA): SDPACustom()\n",
|
1363 |
+
" )\n",
|
1364 |
+
" (feed_forward): FeedForward(\n",
|
1365 |
+
" (w1): Linear(in_features=2048, out_features=8192, bias=False)\n",
|
1366 |
+
" (w2): Linear(in_features=8192, out_features=2048, bias=False)\n",
|
1367 |
+
" (w3): Linear(in_features=2048, out_features=8192, bias=False)\n",
|
1368 |
+
" )\n",
|
1369 |
+
" (attention_norm): RMSNorm()\n",
|
1370 |
+
" (ffn_norm): RMSNorm()\n",
|
1371 |
+
" )\n",
|
1372 |
+
" )\n",
|
1373 |
+
" (norm): RMSNorm()\n",
|
1374 |
+
" (output): Linear(in_features=2048, out_features=128256, bias=False)\n",
|
1375 |
+
")\n",
|
1376 |
+
"[INFO 2025-04-10 14:23:01,659 builder.py:228] Exporting with:\n",
|
1377 |
+
"[INFO 2025-04-10 14:23:01,662 builder.py:229] inputs: (tensor([[2, 3, 4]]), {'input_pos': tensor([0])})\n",
|
1378 |
+
"[INFO 2025-04-10 14:23:01,668 builder.py:230] kwargs: None\n",
|
1379 |
+
"[INFO 2025-04-10 14:23:01,668 builder.py:231] dynamic shapes: ({1: <class 'executorch.extension.llm.export.builder.token_dim'>}, {'input_pos': {0: 1}})\n",
|
1380 |
+
"[INFO 2025-04-10 14:23:16,177 builder.py:262] Running canonical pass: RemoveRedundantTransposes\n",
|
1381 |
+
"[INFO 2025-04-10 14:23:16,222 export_llama_lib.py:755] Lowering model using following partitioner(s): \n",
|
1382 |
+
"[INFO 2025-04-10 14:23:16,222 export_llama_lib.py:757] --> XnnpackDynamicallyQuantizedPartitioner\n",
|
1383 |
+
"[INFO 2025-04-10 14:23:16,222 builder.py:348] Using pt2e [] to quantizing the model...\n",
|
1384 |
+
"[INFO 2025-04-10 14:23:16,222 builder.py:399] No quantizer provided, passing...\n",
|
1385 |
+
"[INFO 2025-04-10 14:23:16,222 builder.py:226] Re-exporting with:\n",
|
1386 |
+
"[INFO 2025-04-10 14:23:16,223 builder.py:229] inputs: (tensor([[2, 3, 4]]), {'input_pos': tensor([0])})\n",
|
1387 |
+
"[INFO 2025-04-10 14:23:16,223 builder.py:230] kwargs: None\n",
|
1388 |
+
"[INFO 2025-04-10 14:23:16,223 builder.py:231] dynamic shapes: ({1: <class 'executorch.extension.llm.export.builder.token_dim'>}, {'input_pos': {0: 1}})\n",
|
1389 |
+
"/usr/local/lib/python3.11/dist-packages/executorch/exir/emit/_emitter.py:1592: UserWarning: Mutation on a buffer in the model is detected. ExecuTorch assumes buffers that are mutated in the graph have a meaningless initial state, only the shape and dtype will be serialized, unless a pass which sets meta[\"et_init_buffer\"] to True such as InitializedMutableBufferPass is run.\n",
|
1390 |
+
" warnings.warn(\n",
|
1391 |
+
"[INFO 2025-04-10 14:24:42,462 builder.py:518] Required memory for activation in bytes: [0, 17735552]\n",
|
1392 |
+
"modelname: llama3_2-1B\n",
|
1393 |
+
"output_file: llama3_2-1B.pte\n",
|
1394 |
+
"[INFO 2025-04-10 14:25:02,007 utils.py:141] Saved exported program to llama3_2-1B.pte\n"
|
1395 |
+
]
|
1396 |
+
}
|
1397 |
+
]
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"cell_type": "markdown",
|
1401 |
+
"source": [],
|
1402 |
+
"metadata": {
|
1403 |
+
"id": "d_urCPkvEi98"
|
1404 |
+
}
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"cell_type": "code",
|
1408 |
+
"source": [
|
1409 |
+
"!mv ./llama3_2-1B.pte /content/models/Llama-3.2-1B/original/"
|
1410 |
+
],
|
1411 |
+
"metadata": {
|
1412 |
+
"id": "XOAVJceLE68b"
|
1413 |
+
},
|
1414 |
+
"execution_count": 11,
|
1415 |
+
"outputs": []
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"cell_type": "markdown",
|
1419 |
+
"source": [
|
1420 |
+
"**Step 4: Upload to HF**"
|
1421 |
+
],
|
1422 |
+
"metadata": {
|
1423 |
+
"id": "-urRwR_iF0QX"
|
1424 |
+
}
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"cell_type": "code",
|
1428 |
+
"source": [
|
1429 |
+
"!huggingface-cli upload executorch-community/Llama-3.2-1B-ET /content/models/Llama-3.2-1B/original/ --exclude=\"*.pth\""
|
1430 |
+
],
|
1431 |
+
"metadata": {
|
1432 |
+
"colab": {
|
1433 |
+
"base_uri": "https://localhost:8080/"
|
1434 |
+
},
|
1435 |
+
"id": "9YvGfvgxF8sn",
|
1436 |
+
"outputId": "d580b95d-006b-43db-f540-a1a6f58dd374"
|
1437 |
+
},
|
1438 |
+
"execution_count": 14,
|
1439 |
+
"outputs": [
|
1440 |
+
{
|
1441 |
+
"output_type": "stream",
|
1442 |
+
"name": "stdout",
|
1443 |
+
"text": [
|
1444 |
+
"Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.\n",
|
1445 |
+
"Start hashing 3 files.\n",
|
1446 |
+
"Finished hashing 3 files.\n",
|
1447 |
+
"llama3_2-1B.pte: 100% 2.47G/2.47G [01:07<00:00, 36.5MB/s]\n",
|
1448 |
+
"Removing 2 file(s) from commit that have not changed.\n",
|
1449 |
+
"https://huggingface.co/executorch-community/Llama-3.2-1B-ET/tree/main/.\n"
|
1450 |
+
]
|
1451 |
+
}
|
1452 |
+
]
|
1453 |
+
}
|
1454 |
+
]
|
1455 |
+
}
|