evamxb commited on
Commit
1b82f56
·
verified ·
1 Parent(s): 6d91149

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -165
README.md CHANGED
@@ -1,199 +1,76 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
 
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
  ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - evamxb/soft-cite-intent
6
+ language:
7
+ - en
8
+ pipeline_tag: text-classification
9
  ---
10
 
11
+ # Software Citation Intent Classifier
12
 
13
+ The Software Citation Intent Classifier (`soft-cite-intent-cls`) can be used to predict the citation or "reference" intent
14
+ behind a text reference or citation to a piece of software in an academic article.
15
 
16
+ Possible values include:
17
 
18
+ - `used`
19
+ - `mentioned`
20
+ - `created`
21
+ - `other`
22
 
23
+ For example, given the sentence: "The XYZ code and software, with an example input dataset and detailed instructions are available from GitHub (https://github.com/user/repo)"
24
+ should be predicted as "created" as the authors are directly referencing their own created code.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ _The specific name of the code and software and username and repository have been removed for privacy._
27
 
28
+ In comparison, the sentence: "For the statistical analyses of the data in this study, the Statistical Package for the Social Sciences (SPSS) version 22 (IBM Corp, Armonk, New York) was used"
29
+ should be predicted as "used" as the authors are directly informing the reader that this is not their own software but rather software they used for analysis.
30
 
31
+ This was originally created during the [CZI Software Impact Hackathon](https://github.com/chanzuckerberg/software-impact-hackathon-2023) by Ana-Maria Istrate, Joshua Fisher, Xinyu Yang, Kara Moraw, Kai Li, Donghui Li, and Martin Klein.
32
 
33
+ Their original work can be found in the [SoftwareCitationIntent Repository](https://github.com/karacolada/SoftwareImpactHackathon2023_SoftwareCitationIntent).
34
 
35
+ Eva Maxfield Brown recreated and uploaded this version of the model to Huggingface Hub for her own work, her scripts for recreating this model can be found in the [grobid-soft-proc repository](https://github.com/evamaxfield/grobid-soft-proc).
36
 
37
+ ## Model Details
38
 
39
+ ### Model Description
40
 
41
+ <!-- Provide a longer summary of what this model is. -->
42
 
43
+ - **Developed by:** Originally created by Ana-Maria Istrate, Joshua Fisher, Xinyu Yang, Kara Moraw, Kai Li, Donghui Li, and Martin Klein.
44
+ - **Made Available by** Eva Maxfield Brown
45
+ - **Language(s) (NLP):** en (English)
46
+ - **License:** MIT
47
+ - **Finetuned from model [optional]:** [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base)
48
 
49
+ ### Model Sources [optional]
50
 
51
+ <!-- Provide the basic links for the model. -->
52
 
53
+ - **Repository:** [Original Repository](https://github.com/karacolada/SoftwareImpactHackathon2023_SoftwareCitationIntent), [Distribution Repository](https://github.com/evamaxfield/grobid-soft-proc/tree/main/training)
54
+ - **Paper [optional]:** [Scientific Software Citation Intent Classification using Large Language Models](https://github.com/NFDI4DS/nslp2024/blob/main/accepted_papers/NSLP_2024_paper_20.pdf)
55
 
56
  ## Training Details
57
 
58
  ### Training Data
59
 
60
+ - **HuggingFace Dataset:** [soft-cite-intent](https://huggingface.co/datasets/evamxb/soft-cite-intent)
61
+ - **CSV from Repo:** [soft-cite-intent](https://github.com/evamaxfield/grobid-soft-proc/blob/main/training/sci-impact-hack-soft-cite-intent.csv)
 
62
 
63
  ### Training Procedure
64
 
65
+ - **Training Script:** [train-and-upload-best](https://github.com/evamaxfield/grobid-soft-proc/blob/main/training/train-and-upload-best.py)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  ### Results
68
 
69
+ - Accuracy: 0.916
70
+ - Precision: 0.916
71
+ - Recall: 0.916
72
+ - F1: 0.916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
  ## Citation [optional]
75
 
76
+ See their paper [Scientific Software Citation Intent Classification using Large Language Models](https://github.com/NFDI4DS/nslp2024/blob/main/accepted_papers/NSLP_2024_paper_20.pdf) at NSLP2024.