Delete scoresdeve_scheduler.py
Browse files- scoresdeve_scheduler.py +0 -281
scoresdeve_scheduler.py
DELETED
@@ -1,281 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
from typing import Optional, Tuple, Union
|
3 |
-
import torch
|
4 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
5 |
-
from diffusers.utils import BaseOutput
|
6 |
-
from diffusers.utils.torch_utils import randn_tensor
|
7 |
-
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
|
8 |
-
|
9 |
-
@dataclass
|
10 |
-
class SdeVeOutput(BaseOutput):
|
11 |
-
"""
|
12 |
-
Output class for the scheduler's `step` function output.
|
13 |
-
|
14 |
-
Args:
|
15 |
-
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
16 |
-
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
17 |
-
denoising loop.
|
18 |
-
prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
19 |
-
Mean averaged `prev_sample` over previous timesteps.
|
20 |
-
"""
|
21 |
-
|
22 |
-
prev_sample: torch.FloatTensor
|
23 |
-
prev_sample_mean: torch.FloatTensor
|
24 |
-
|
25 |
-
|
26 |
-
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
|
27 |
-
"""
|
28 |
-
`ScoreSdeVeScheduler` is a variance exploding stochastic differential equation (SDE) scheduler.
|
29 |
-
|
30 |
-
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
31 |
-
methods the library implements for all schedulers such as loading and saving.
|
32 |
-
|
33 |
-
Args:
|
34 |
-
num_train_timesteps (`int`, defaults to 1000):
|
35 |
-
The number of diffusion steps to train the model.
|
36 |
-
snr (`float`, defaults to 0.15):
|
37 |
-
A coefficient weighting the step from the `model_output` sample (from the network) to the random noise.
|
38 |
-
sigma_min (`float`, defaults to 0.01):
|
39 |
-
The initial noise scale for the sigma sequence in the sampling procedure. The minimum sigma should mirror
|
40 |
-
the distribution of the data.
|
41 |
-
sigma_max (`float`, defaults to 1348.0):
|
42 |
-
The maximum value used for the range of continuous timesteps passed into the model.
|
43 |
-
sampling_eps (`float`, defaults to 1e-5):
|
44 |
-
The end value of sampling where timesteps decrease progressively from 1 to epsilon.
|
45 |
-
correct_steps (`int`, defaults to 1):
|
46 |
-
The number of correction steps performed on a produced sample.
|
47 |
-
"""
|
48 |
-
|
49 |
-
order = 1
|
50 |
-
|
51 |
-
@register_to_config
|
52 |
-
def __init__(
|
53 |
-
self,
|
54 |
-
num_train_timesteps: int = 2000,
|
55 |
-
snr: float = 0.15,
|
56 |
-
sigma_min: float = 0.01,
|
57 |
-
sigma_max: float = 1348.0,
|
58 |
-
sampling_eps: float = 1e-5,
|
59 |
-
correct_steps: int = 1,
|
60 |
-
):
|
61 |
-
# standard deviation of the initial noise distribution
|
62 |
-
self.init_noise_sigma = sigma_max
|
63 |
-
|
64 |
-
# setable values
|
65 |
-
self.timesteps = None
|
66 |
-
|
67 |
-
self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
|
68 |
-
|
69 |
-
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
70 |
-
"""
|
71 |
-
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
72 |
-
current timestep.
|
73 |
-
|
74 |
-
Args:
|
75 |
-
sample (`torch.FloatTensor`):
|
76 |
-
The input sample.
|
77 |
-
timestep (`int`, *optional*):
|
78 |
-
The current timestep in the diffusion chain.
|
79 |
-
|
80 |
-
Returns:
|
81 |
-
`torch.FloatTensor`:
|
82 |
-
A scaled input sample.
|
83 |
-
"""
|
84 |
-
return sample
|
85 |
-
|
86 |
-
def set_timesteps(
|
87 |
-
self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None
|
88 |
-
):
|
89 |
-
"""
|
90 |
-
Sets the continuous timesteps used for the diffusion chain (to be run before inference).
|
91 |
-
|
92 |
-
Args:
|
93 |
-
num_inference_steps (`int`):
|
94 |
-
The number of diffusion steps used when generating samples with a pre-trained model.
|
95 |
-
sampling_eps (`float`, *optional*):
|
96 |
-
The final timestep value (overrides value given during scheduler instantiation).
|
97 |
-
device (`str` or `torch.device`, *optional*):
|
98 |
-
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
99 |
-
|
100 |
-
"""
|
101 |
-
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
|
102 |
-
|
103 |
-
self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device)
|
104 |
-
|
105 |
-
def set_sigmas(
|
106 |
-
self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
|
107 |
-
):
|
108 |
-
"""
|
109 |
-
Sets the noise scales used for the diffusion chain (to be run before inference). The sigmas control the weight
|
110 |
-
of the `drift` and `diffusion` components of the sample update.
|
111 |
-
|
112 |
-
Args:
|
113 |
-
num_inference_steps (`int`):
|
114 |
-
The number of diffusion steps used when generating samples with a pre-trained model.
|
115 |
-
sigma_min (`float`, optional):
|
116 |
-
The initial noise scale value (overrides value given during scheduler instantiation).
|
117 |
-
sigma_max (`float`, optional):
|
118 |
-
The final noise scale value (overrides value given during scheduler instantiation).
|
119 |
-
sampling_eps (`float`, optional):
|
120 |
-
The final timestep value (overrides value given during scheduler instantiation).
|
121 |
-
|
122 |
-
"""
|
123 |
-
sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
|
124 |
-
sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
|
125 |
-
sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
|
126 |
-
if self.timesteps is None:
|
127 |
-
self.set_timesteps(num_inference_steps, sampling_eps)
|
128 |
-
|
129 |
-
self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
|
130 |
-
self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps))
|
131 |
-
self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
|
132 |
-
|
133 |
-
def get_adjacent_sigma(self, timesteps, t):
|
134 |
-
return torch.where(
|
135 |
-
timesteps == 0,
|
136 |
-
torch.zeros_like(t.to(timesteps.device)),
|
137 |
-
self.discrete_sigmas[timesteps - 1].to(timesteps.device),
|
138 |
-
)
|
139 |
-
|
140 |
-
def step_pred(
|
141 |
-
self,
|
142 |
-
model_output: torch.FloatTensor,
|
143 |
-
timestep: int,
|
144 |
-
sample: torch.FloatTensor,
|
145 |
-
generator: Optional[torch.Generator] = None,
|
146 |
-
return_dict: bool = True,
|
147 |
-
) -> Union[SdeVeOutput, Tuple]:
|
148 |
-
"""
|
149 |
-
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
150 |
-
process from the learned model outputs (most often the predicted noise).
|
151 |
-
|
152 |
-
Args:
|
153 |
-
model_output (`torch.FloatTensor`):
|
154 |
-
The direct output from learned diffusion model.
|
155 |
-
timestep (`int`):
|
156 |
-
The current discrete timestep in the diffusion chain.
|
157 |
-
sample (`torch.FloatTensor`):
|
158 |
-
A current instance of a sample created by the diffusion process.
|
159 |
-
generator (`torch.Generator`, *optional*):
|
160 |
-
A random number generator.
|
161 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
162 |
-
Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
|
163 |
-
|
164 |
-
Returns:
|
165 |
-
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
|
166 |
-
If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
|
167 |
-
is returned where the first element is the sample tensor.
|
168 |
-
|
169 |
-
"""
|
170 |
-
if self.timesteps is None:
|
171 |
-
raise ValueError(
|
172 |
-
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
|
173 |
-
)
|
174 |
-
|
175 |
-
timestep = timestep * torch.ones(
|
176 |
-
sample.shape[0], device=sample.device
|
177 |
-
) # torch.repeat_interleave(timestep, sample.shape[0])
|
178 |
-
timesteps = (timestep * (len(self.timesteps) - 1)).long()
|
179 |
-
|
180 |
-
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
|
181 |
-
timesteps = timesteps.to(self.discrete_sigmas.device)
|
182 |
-
|
183 |
-
sigma = self.discrete_sigmas[timesteps].to(sample.device)
|
184 |
-
adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
|
185 |
-
drift = torch.zeros_like(sample)
|
186 |
-
diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5
|
187 |
-
|
188 |
-
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
|
189 |
-
# also equation 47 shows the analog from SDE models to ancestral sampling methods
|
190 |
-
diffusion = diffusion.flatten()
|
191 |
-
while len(diffusion.shape) < len(sample.shape):
|
192 |
-
diffusion = diffusion.unsqueeze(-1)
|
193 |
-
drift = drift - diffusion**2 * model_output
|
194 |
-
|
195 |
-
# equation 6: sample noise for the diffusion term of
|
196 |
-
noise = randn_tensor(
|
197 |
-
sample.shape, layout=sample.layout, generator=generator, device=sample.device, dtype=sample.dtype
|
198 |
-
)
|
199 |
-
prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep
|
200 |
-
# TODO is the variable diffusion the correct scaling term for the noise?
|
201 |
-
prev_sample = prev_sample_mean + diffusion * noise # add impact of diffusion field g
|
202 |
-
|
203 |
-
if not return_dict:
|
204 |
-
return (prev_sample, prev_sample_mean)
|
205 |
-
|
206 |
-
return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
|
207 |
-
|
208 |
-
def step_correct(
|
209 |
-
self,
|
210 |
-
model_output: torch.FloatTensor,
|
211 |
-
sample: torch.FloatTensor,
|
212 |
-
generator: Optional[torch.Generator] = None,
|
213 |
-
return_dict: bool = True,
|
214 |
-
) -> Union[SchedulerOutput, Tuple]:
|
215 |
-
"""
|
216 |
-
Correct the predicted sample based on the `model_output` of the network. This is often run repeatedly after
|
217 |
-
making the prediction for the previous timestep.
|
218 |
-
|
219 |
-
Args:
|
220 |
-
model_output (`torch.FloatTensor`):
|
221 |
-
The direct output from learned diffusion model.
|
222 |
-
sample (`torch.FloatTensor`):
|
223 |
-
A current instance of a sample created by the diffusion process.
|
224 |
-
generator (`torch.Generator`, *optional*):
|
225 |
-
A random number generator.
|
226 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
227 |
-
Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
|
228 |
-
|
229 |
-
Returns:
|
230 |
-
[`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
|
231 |
-
If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
|
232 |
-
is returned where the first element is the sample tensor.
|
233 |
-
|
234 |
-
"""
|
235 |
-
if self.timesteps is None:
|
236 |
-
raise ValueError(
|
237 |
-
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
|
238 |
-
)
|
239 |
-
|
240 |
-
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
|
241 |
-
# sample noise for correction
|
242 |
-
noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator, device=sample.device).to(sample.device)
|
243 |
-
|
244 |
-
# compute step size from the model_output, the noise, and the snr
|
245 |
-
grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean()
|
246 |
-
noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
|
247 |
-
step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
|
248 |
-
step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
|
249 |
-
# self.repeat_scalar(step_size, sample.shape[0])
|
250 |
-
|
251 |
-
# compute corrected sample: model_output term and noise term
|
252 |
-
step_size = step_size.flatten()
|
253 |
-
while len(step_size.shape) < len(sample.shape):
|
254 |
-
step_size = step_size.unsqueeze(-1)
|
255 |
-
prev_sample_mean = sample + step_size * model_output
|
256 |
-
prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
|
257 |
-
|
258 |
-
if not return_dict:
|
259 |
-
return (prev_sample,)
|
260 |
-
|
261 |
-
return SchedulerOutput(prev_sample=prev_sample)
|
262 |
-
|
263 |
-
def add_noise(
|
264 |
-
self,
|
265 |
-
original_samples: torch.FloatTensor,
|
266 |
-
noise: torch.FloatTensor,
|
267 |
-
timesteps: torch.FloatTensor,
|
268 |
-
) -> torch.FloatTensor:
|
269 |
-
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
270 |
-
timesteps = timesteps.to(original_samples.device)
|
271 |
-
sigmas = self.config.sigma_min * (self.config.sigma_max / self.config.sigma_min) ** timesteps
|
272 |
-
noise = (
|
273 |
-
noise * sigmas[:, None, None, None]
|
274 |
-
if noise is not None
|
275 |
-
else torch.randn_like(original_samples) * sigmas[:, None, None, None]
|
276 |
-
)
|
277 |
-
noisy_samples = noise + original_samples
|
278 |
-
return noisy_samples
|
279 |
-
|
280 |
-
def __len__(self):
|
281 |
-
return self.config.num_train_timesteps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|