giulio98 commited on
Commit
87bab8b
·
verified ·
1 Parent(s): 734c133

Delete scoresdeve_scheduler.py

Browse files
Files changed (1) hide show
  1. scoresdeve_scheduler.py +0 -281
scoresdeve_scheduler.py DELETED
@@ -1,281 +0,0 @@
1
- from dataclasses import dataclass
2
- from typing import Optional, Tuple, Union
3
- import torch
4
- from diffusers.configuration_utils import ConfigMixin, register_to_config
5
- from diffusers.utils import BaseOutput
6
- from diffusers.utils.torch_utils import randn_tensor
7
- from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
8
-
9
- @dataclass
10
- class SdeVeOutput(BaseOutput):
11
- """
12
- Output class for the scheduler's `step` function output.
13
-
14
- Args:
15
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
16
- Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
17
- denoising loop.
18
- prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
19
- Mean averaged `prev_sample` over previous timesteps.
20
- """
21
-
22
- prev_sample: torch.FloatTensor
23
- prev_sample_mean: torch.FloatTensor
24
-
25
-
26
- class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
27
- """
28
- `ScoreSdeVeScheduler` is a variance exploding stochastic differential equation (SDE) scheduler.
29
-
30
- This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
31
- methods the library implements for all schedulers such as loading and saving.
32
-
33
- Args:
34
- num_train_timesteps (`int`, defaults to 1000):
35
- The number of diffusion steps to train the model.
36
- snr (`float`, defaults to 0.15):
37
- A coefficient weighting the step from the `model_output` sample (from the network) to the random noise.
38
- sigma_min (`float`, defaults to 0.01):
39
- The initial noise scale for the sigma sequence in the sampling procedure. The minimum sigma should mirror
40
- the distribution of the data.
41
- sigma_max (`float`, defaults to 1348.0):
42
- The maximum value used for the range of continuous timesteps passed into the model.
43
- sampling_eps (`float`, defaults to 1e-5):
44
- The end value of sampling where timesteps decrease progressively from 1 to epsilon.
45
- correct_steps (`int`, defaults to 1):
46
- The number of correction steps performed on a produced sample.
47
- """
48
-
49
- order = 1
50
-
51
- @register_to_config
52
- def __init__(
53
- self,
54
- num_train_timesteps: int = 2000,
55
- snr: float = 0.15,
56
- sigma_min: float = 0.01,
57
- sigma_max: float = 1348.0,
58
- sampling_eps: float = 1e-5,
59
- correct_steps: int = 1,
60
- ):
61
- # standard deviation of the initial noise distribution
62
- self.init_noise_sigma = sigma_max
63
-
64
- # setable values
65
- self.timesteps = None
66
-
67
- self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
68
-
69
- def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
70
- """
71
- Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
72
- current timestep.
73
-
74
- Args:
75
- sample (`torch.FloatTensor`):
76
- The input sample.
77
- timestep (`int`, *optional*):
78
- The current timestep in the diffusion chain.
79
-
80
- Returns:
81
- `torch.FloatTensor`:
82
- A scaled input sample.
83
- """
84
- return sample
85
-
86
- def set_timesteps(
87
- self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None
88
- ):
89
- """
90
- Sets the continuous timesteps used for the diffusion chain (to be run before inference).
91
-
92
- Args:
93
- num_inference_steps (`int`):
94
- The number of diffusion steps used when generating samples with a pre-trained model.
95
- sampling_eps (`float`, *optional*):
96
- The final timestep value (overrides value given during scheduler instantiation).
97
- device (`str` or `torch.device`, *optional*):
98
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
99
-
100
- """
101
- sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
102
-
103
- self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device)
104
-
105
- def set_sigmas(
106
- self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
107
- ):
108
- """
109
- Sets the noise scales used for the diffusion chain (to be run before inference). The sigmas control the weight
110
- of the `drift` and `diffusion` components of the sample update.
111
-
112
- Args:
113
- num_inference_steps (`int`):
114
- The number of diffusion steps used when generating samples with a pre-trained model.
115
- sigma_min (`float`, optional):
116
- The initial noise scale value (overrides value given during scheduler instantiation).
117
- sigma_max (`float`, optional):
118
- The final noise scale value (overrides value given during scheduler instantiation).
119
- sampling_eps (`float`, optional):
120
- The final timestep value (overrides value given during scheduler instantiation).
121
-
122
- """
123
- sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
124
- sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
125
- sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
126
- if self.timesteps is None:
127
- self.set_timesteps(num_inference_steps, sampling_eps)
128
-
129
- self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
130
- self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps))
131
- self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
132
-
133
- def get_adjacent_sigma(self, timesteps, t):
134
- return torch.where(
135
- timesteps == 0,
136
- torch.zeros_like(t.to(timesteps.device)),
137
- self.discrete_sigmas[timesteps - 1].to(timesteps.device),
138
- )
139
-
140
- def step_pred(
141
- self,
142
- model_output: torch.FloatTensor,
143
- timestep: int,
144
- sample: torch.FloatTensor,
145
- generator: Optional[torch.Generator] = None,
146
- return_dict: bool = True,
147
- ) -> Union[SdeVeOutput, Tuple]:
148
- """
149
- Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
150
- process from the learned model outputs (most often the predicted noise).
151
-
152
- Args:
153
- model_output (`torch.FloatTensor`):
154
- The direct output from learned diffusion model.
155
- timestep (`int`):
156
- The current discrete timestep in the diffusion chain.
157
- sample (`torch.FloatTensor`):
158
- A current instance of a sample created by the diffusion process.
159
- generator (`torch.Generator`, *optional*):
160
- A random number generator.
161
- return_dict (`bool`, *optional*, defaults to `True`):
162
- Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
163
-
164
- Returns:
165
- [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
166
- If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
167
- is returned where the first element is the sample tensor.
168
-
169
- """
170
- if self.timesteps is None:
171
- raise ValueError(
172
- "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
173
- )
174
-
175
- timestep = timestep * torch.ones(
176
- sample.shape[0], device=sample.device
177
- ) # torch.repeat_interleave(timestep, sample.shape[0])
178
- timesteps = (timestep * (len(self.timesteps) - 1)).long()
179
-
180
- # mps requires indices to be in the same device, so we use cpu as is the default with cuda
181
- timesteps = timesteps.to(self.discrete_sigmas.device)
182
-
183
- sigma = self.discrete_sigmas[timesteps].to(sample.device)
184
- adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
185
- drift = torch.zeros_like(sample)
186
- diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5
187
-
188
- # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
189
- # also equation 47 shows the analog from SDE models to ancestral sampling methods
190
- diffusion = diffusion.flatten()
191
- while len(diffusion.shape) < len(sample.shape):
192
- diffusion = diffusion.unsqueeze(-1)
193
- drift = drift - diffusion**2 * model_output
194
-
195
- # equation 6: sample noise for the diffusion term of
196
- noise = randn_tensor(
197
- sample.shape, layout=sample.layout, generator=generator, device=sample.device, dtype=sample.dtype
198
- )
199
- prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep
200
- # TODO is the variable diffusion the correct scaling term for the noise?
201
- prev_sample = prev_sample_mean + diffusion * noise # add impact of diffusion field g
202
-
203
- if not return_dict:
204
- return (prev_sample, prev_sample_mean)
205
-
206
- return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
207
-
208
- def step_correct(
209
- self,
210
- model_output: torch.FloatTensor,
211
- sample: torch.FloatTensor,
212
- generator: Optional[torch.Generator] = None,
213
- return_dict: bool = True,
214
- ) -> Union[SchedulerOutput, Tuple]:
215
- """
216
- Correct the predicted sample based on the `model_output` of the network. This is often run repeatedly after
217
- making the prediction for the previous timestep.
218
-
219
- Args:
220
- model_output (`torch.FloatTensor`):
221
- The direct output from learned diffusion model.
222
- sample (`torch.FloatTensor`):
223
- A current instance of a sample created by the diffusion process.
224
- generator (`torch.Generator`, *optional*):
225
- A random number generator.
226
- return_dict (`bool`, *optional*, defaults to `True`):
227
- Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
228
-
229
- Returns:
230
- [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
231
- If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
232
- is returned where the first element is the sample tensor.
233
-
234
- """
235
- if self.timesteps is None:
236
- raise ValueError(
237
- "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
238
- )
239
-
240
- # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
241
- # sample noise for correction
242
- noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator, device=sample.device).to(sample.device)
243
-
244
- # compute step size from the model_output, the noise, and the snr
245
- grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean()
246
- noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
247
- step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
248
- step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
249
- # self.repeat_scalar(step_size, sample.shape[0])
250
-
251
- # compute corrected sample: model_output term and noise term
252
- step_size = step_size.flatten()
253
- while len(step_size.shape) < len(sample.shape):
254
- step_size = step_size.unsqueeze(-1)
255
- prev_sample_mean = sample + step_size * model_output
256
- prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
257
-
258
- if not return_dict:
259
- return (prev_sample,)
260
-
261
- return SchedulerOutput(prev_sample=prev_sample)
262
-
263
- def add_noise(
264
- self,
265
- original_samples: torch.FloatTensor,
266
- noise: torch.FloatTensor,
267
- timesteps: torch.FloatTensor,
268
- ) -> torch.FloatTensor:
269
- # Make sure sigmas and timesteps have the same device and dtype as original_samples
270
- timesteps = timesteps.to(original_samples.device)
271
- sigmas = self.config.sigma_min * (self.config.sigma_max / self.config.sigma_min) ** timesteps
272
- noise = (
273
- noise * sigmas[:, None, None, None]
274
- if noise is not None
275
- else torch.randn_like(original_samples) * sigmas[:, None, None, None]
276
- )
277
- noisy_samples = noise + original_samples
278
- return noisy_samples
279
-
280
- def __len__(self):
281
- return self.config.num_train_timesteps