giulio98 commited on
Commit
5272f33
·
verified ·
1 Parent(s): 9ebca08

Create custom_pipeline/sde_ve_pipeline.py

Browse files
Files changed (1) hide show
  1. custom_pipeline/sde_ve_pipeline.py +89 -0
custom_pipeline/sde_ve_pipeline.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ..scheduler import ScoreSdeVeScheduler
2
+ from ..unet import UNet2DModel
3
+ from diffusers.utils.torch_utils import randn_tensor
4
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
5
+
6
+
7
+ class ScoreSdeVePipeline(DiffusionPipeline):
8
+ r"""
9
+ Pipeline for unconditional image generation.
10
+
11
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
12
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
13
+
14
+ Parameters:
15
+ unet ([`UNet2DModel`]):
16
+ A `UNet2DModel` to denoise the encoded image.
17
+ scheduler ([`ScoreSdeVeScheduler`]):
18
+ A `ScoreSdeVeScheduler` to be used in combination with `unet` to denoise the encoded image.
19
+ """
20
+
21
+ unet: UNet2DModel
22
+ scheduler: ScoreSdeVeScheduler
23
+
24
+ def __init__(self, unet: UNet2DModel, scheduler: ScoreSdeVeScheduler):
25
+ super().__init__()
26
+ self.register_modules(unet=unet, scheduler=scheduler)
27
+
28
+ @torch.no_grad()
29
+ def __call__(
30
+ self,
31
+ batch_size: int = 1,
32
+ num_inference_steps: int = 2000,
33
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
34
+ output_type: Optional[str] = "pil",
35
+ return_dict: bool = True,
36
+ **kwargs,
37
+ ) -> Union[ImagePipelineOutput, Tuple]:
38
+ r"""
39
+ The call function to the pipeline for generation.
40
+
41
+ Args:
42
+ batch_size (`int`, *optional*, defaults to 1):
43
+ The number of images to generate.
44
+ generator (`torch.Generator`, `optional`):
45
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
46
+ generation deterministic.
47
+ output_type (`str`, `optional`, defaults to `"pil"`):
48
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
49
+ return_dict (`bool`, *optional*, defaults to `True`):
50
+ Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple.
51
+
52
+ Returns:
53
+ [`~pipelines.ImagePipelineOutput`] or `tuple`:
54
+ If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
55
+ returned where the first element is a list with the generated images.
56
+ """
57
+ img_size = self.unet.config.sample_size
58
+ shape = (batch_size, 3, img_size, img_size)
59
+
60
+ model = self.unet
61
+
62
+ sample = randn_tensor(shape, generator=generator, device=self.device) * self.scheduler.init_noise_sigma
63
+ sample = sample.to(self.device)
64
+
65
+ self.scheduler.set_timesteps(num_inference_steps)
66
+ self.scheduler.set_sigmas(num_inference_steps)
67
+
68
+ for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
69
+ sigma_t = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device)
70
+
71
+ # correction step
72
+ for _ in range(self.scheduler.config.correct_steps):
73
+ model_output = self.unet(sample, sigma_t).sample
74
+ sample = self.scheduler.step_correct(model_output, sample, generator=generator).prev_sample
75
+
76
+ # prediction step
77
+ model_output = model(sample, sigma_t).sample
78
+ output = self.scheduler.step_pred(model_output, t, sample, generator=generator)
79
+
80
+ sample, sample_mean = output.prev_sample, output.prev_sample_mean
81
+
82
+ sample = sample_mean.clamp(0, 1)
83
+ sample = sample.cpu().permute(0, 2, 3, 1).numpy()
84
+ if output_type == "pil":
85
+ sample = self.numpy_to_pil(sample)
86
+
87
+ if not return_dict:
88
+ return (sample,)
89
+ return ImagePipelineOutput(images=sample)