giulio98 commited on
Commit
45bc1bd
·
verified ·
1 Parent(s): 1b93167

Delete custom_pipeline/sde_ve_pipeline.py

Browse files
Files changed (1) hide show
  1. custom_pipeline/sde_ve_pipeline.py +0 -87
custom_pipeline/sde_ve_pipeline.py DELETED
@@ -1,87 +0,0 @@
1
- from diffusers.utils.torch_utils import randn_tensor
2
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
3
-
4
-
5
- class ScoreSdeVePipeline(DiffusionPipeline):
6
- r"""
7
- Pipeline for unconditional image generation.
8
-
9
- This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
10
- implemented for all pipelines (downloading, saving, running on a particular device, etc.).
11
-
12
- Parameters:
13
- unet ([`UNet2DModel`]):
14
- A `UNet2DModel` to denoise the encoded image.
15
- scheduler ([`ScoreSdeVeScheduler`]):
16
- A `ScoreSdeVeScheduler` to be used in combination with `unet` to denoise the encoded image.
17
- """
18
-
19
- unet
20
- scheduler
21
-
22
- def __init__(self, unet, scheduler):
23
- super().__init__()
24
- self.register_modules(unet=unet, scheduler=scheduler)
25
-
26
- @torch.no_grad()
27
- def __call__(
28
- self,
29
- batch_size: int = 1,
30
- num_inference_steps: int = 2000,
31
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
32
- output_type: Optional[str] = "pil",
33
- return_dict: bool = True,
34
- **kwargs,
35
- ) -> Union[ImagePipelineOutput, Tuple]:
36
- r"""
37
- The call function to the pipeline for generation.
38
-
39
- Args:
40
- batch_size (`int`, *optional*, defaults to 1):
41
- The number of images to generate.
42
- generator (`torch.Generator`, `optional`):
43
- A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
44
- generation deterministic.
45
- output_type (`str`, `optional`, defaults to `"pil"`):
46
- The output format of the generated image. Choose between `PIL.Image` or `np.array`.
47
- return_dict (`bool`, *optional*, defaults to `True`):
48
- Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple.
49
-
50
- Returns:
51
- [`~pipelines.ImagePipelineOutput`] or `tuple`:
52
- If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
53
- returned where the first element is a list with the generated images.
54
- """
55
- img_size = self.unet.config.sample_size
56
- shape = (batch_size, 3, img_size, img_size)
57
-
58
- model = self.unet
59
-
60
- sample = randn_tensor(shape, generator=generator, device=self.device) * self.scheduler.init_noise_sigma
61
- sample = sample.to(self.device)
62
-
63
- self.scheduler.set_timesteps(num_inference_steps)
64
- self.scheduler.set_sigmas(num_inference_steps)
65
-
66
- for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
67
- sigma_t = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device)
68
-
69
- # correction step
70
- for _ in range(self.scheduler.config.correct_steps):
71
- model_output = self.unet(sample, sigma_t).sample
72
- sample = self.scheduler.step_correct(model_output, sample, generator=generator).prev_sample
73
-
74
- # prediction step
75
- model_output = model(sample, sigma_t).sample
76
- output = self.scheduler.step_pred(model_output, t, sample, generator=generator)
77
-
78
- sample, sample_mean = output.prev_sample, output.prev_sample_mean
79
-
80
- sample = sample_mean.clamp(0, 1)
81
- sample = sample.cpu().permute(0, 2, 3, 1).numpy()
82
- if output_type == "pil":
83
- sample = self.numpy_to_pil(sample)
84
-
85
- if not return_dict:
86
- return (sample,)
87
- return ImagePipelineOutput(images=sample)