giulio98 commited on
Commit
34fc7aa
·
verified ·
1 Parent(s): 7b2a255

Create scheduler/__main__.py

Browse files
Files changed (1) hide show
  1. scheduler/__main__.py +266 -0
scheduler/__main__.py ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Optional, Tuple, Union
3
+ import torch
4
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
5
+ from diffusers.utils import BaseOutput
6
+ from diffusers.utils.torch_utils import randn_tensor
7
+ from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
8
+
9
+ @dataclass
10
+ class SdeVeOutput(BaseOutput):
11
+ """
12
+ Output class for the scheduler's `step` function output.
13
+ Args:
14
+ prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
15
+ Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
16
+ denoising loop.
17
+ prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
18
+ Mean averaged `prev_sample` over previous timesteps.
19
+ """
20
+
21
+ prev_sample: torch.FloatTensor
22
+ prev_sample_mean: torch.FloatTensor
23
+
24
+
25
+ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
26
+ """
27
+ `ScoreSdeVeScheduler` is a variance exploding stochastic differential equation (SDE) scheduler.
28
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
29
+ methods the library implements for all schedulers such as loading and saving.
30
+ Args:
31
+ num_train_timesteps (`int`, defaults to 1000):
32
+ The number of diffusion steps to train the model.
33
+ snr (`float`, defaults to 0.15):
34
+ A coefficient weighting the step from the `model_output` sample (from the network) to the random noise.
35
+ sigma_min (`float`, defaults to 0.01):
36
+ The initial noise scale for the sigma sequence in the sampling procedure. The minimum sigma should mirror
37
+ the distribution of the data.
38
+ sigma_max (`float`, defaults to 1348.0):
39
+ The maximum value used for the range of continuous timesteps passed into the model.
40
+ sampling_eps (`float`, defaults to 1e-5):
41
+ The end value of sampling where timesteps decrease progressively from 1 to epsilon.
42
+ correct_steps (`int`, defaults to 1):
43
+ The number of correction steps performed on a produced sample.
44
+ """
45
+
46
+ order = 1
47
+
48
+ @register_to_config
49
+ def __init__(
50
+ self,
51
+ num_train_timesteps: int = 2000,
52
+ snr: float = 0.15,
53
+ sigma_min: float = 0.01,
54
+ sigma_max: float = 1348.0,
55
+ sampling_eps: float = 1e-5,
56
+ correct_steps: int = 1,
57
+ ):
58
+ # standard deviation of the initial noise distribution
59
+ self.init_noise_sigma = sigma_max
60
+
61
+ # setable values
62
+ self.timesteps = None
63
+
64
+ self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
65
+
66
+ def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
67
+ """
68
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
69
+ current timestep.
70
+ Args:
71
+ sample (`torch.FloatTensor`):
72
+ The input sample.
73
+ timestep (`int`, *optional*):
74
+ The current timestep in the diffusion chain.
75
+ Returns:
76
+ `torch.FloatTensor`:
77
+ A scaled input sample.
78
+ """
79
+ return sample
80
+
81
+ def set_timesteps(
82
+ self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None
83
+ ):
84
+ """
85
+ Sets the continuous timesteps used for the diffusion chain (to be run before inference).
86
+ Args:
87
+ num_inference_steps (`int`):
88
+ The number of diffusion steps used when generating samples with a pre-trained model.
89
+ sampling_eps (`float`, *optional*):
90
+ The final timestep value (overrides value given during scheduler instantiation).
91
+ device (`str` or `torch.device`, *optional*):
92
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
93
+ """
94
+ sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
95
+
96
+ self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device)
97
+
98
+ def set_sigmas(
99
+ self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
100
+ ):
101
+ """
102
+ Sets the noise scales used for the diffusion chain (to be run before inference). The sigmas control the weight
103
+ of the `drift` and `diffusion` components of the sample update.
104
+ Args:
105
+ num_inference_steps (`int`):
106
+ The number of diffusion steps used when generating samples with a pre-trained model.
107
+ sigma_min (`float`, optional):
108
+ The initial noise scale value (overrides value given during scheduler instantiation).
109
+ sigma_max (`float`, optional):
110
+ The final noise scale value (overrides value given during scheduler instantiation).
111
+ sampling_eps (`float`, optional):
112
+ The final timestep value (overrides value given during scheduler instantiation).
113
+ """
114
+ sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
115
+ sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
116
+ sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
117
+ if self.timesteps is None:
118
+ self.set_timesteps(num_inference_steps, sampling_eps)
119
+
120
+ self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
121
+ self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps))
122
+ self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
123
+
124
+ def get_adjacent_sigma(self, timesteps, t):
125
+ return torch.where(
126
+ timesteps == 0,
127
+ torch.zeros_like(t.to(timesteps.device)),
128
+ self.discrete_sigmas[timesteps - 1].to(timesteps.device),
129
+ )
130
+
131
+ def step_pred(
132
+ self,
133
+ model_output: torch.FloatTensor,
134
+ timestep: int,
135
+ sample: torch.FloatTensor,
136
+ generator: Optional[torch.Generator] = None,
137
+ return_dict: bool = True,
138
+ ) -> Union[SdeVeOutput, Tuple]:
139
+ """
140
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
141
+ process from the learned model outputs (most often the predicted noise).
142
+ Args:
143
+ model_output (`torch.FloatTensor`):
144
+ The direct output from learned diffusion model.
145
+ timestep (`int`):
146
+ The current discrete timestep in the diffusion chain.
147
+ sample (`torch.FloatTensor`):
148
+ A current instance of a sample created by the diffusion process.
149
+ generator (`torch.Generator`, *optional*):
150
+ A random number generator.
151
+ return_dict (`bool`, *optional*, defaults to `True`):
152
+ Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
153
+ Returns:
154
+ [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
155
+ If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
156
+ is returned where the first element is the sample tensor.
157
+ """
158
+ if self.timesteps is None:
159
+ raise ValueError(
160
+ "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
161
+ )
162
+
163
+ timestep = timestep * torch.ones(
164
+ sample.shape[0], device=sample.device
165
+ ) # torch.repeat_interleave(timestep, sample.shape[0])
166
+ timesteps = (timestep * (len(self.timesteps) - 1)).long()
167
+
168
+ # mps requires indices to be in the same device, so we use cpu as is the default with cuda
169
+ timesteps = timesteps.to(self.discrete_sigmas.device)
170
+
171
+ sigma = self.discrete_sigmas[timesteps].to(sample.device)
172
+ adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
173
+ drift = torch.zeros_like(sample)
174
+ diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5
175
+
176
+ # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
177
+ # also equation 47 shows the analog from SDE models to ancestral sampling methods
178
+ diffusion = diffusion.flatten()
179
+ while len(diffusion.shape) < len(sample.shape):
180
+ diffusion = diffusion.unsqueeze(-1)
181
+ drift = drift - diffusion**2 * model_output
182
+
183
+ # equation 6: sample noise for the diffusion term of
184
+ noise = randn_tensor(
185
+ sample.shape, layout=sample.layout, generator=generator, device=sample.device, dtype=sample.dtype
186
+ )
187
+ prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep
188
+ # TODO is the variable diffusion the correct scaling term for the noise?
189
+ prev_sample = prev_sample_mean + diffusion * noise # add impact of diffusion field g
190
+
191
+ if not return_dict:
192
+ return (prev_sample, prev_sample_mean)
193
+
194
+ return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
195
+
196
+ def step_correct(
197
+ self,
198
+ model_output: torch.FloatTensor,
199
+ sample: torch.FloatTensor,
200
+ generator: Optional[torch.Generator] = None,
201
+ return_dict: bool = True,
202
+ ) -> Union[SchedulerOutput, Tuple]:
203
+ """
204
+ Correct the predicted sample based on the `model_output` of the network. This is often run repeatedly after
205
+ making the prediction for the previous timestep.
206
+ Args:
207
+ model_output (`torch.FloatTensor`):
208
+ The direct output from learned diffusion model.
209
+ sample (`torch.FloatTensor`):
210
+ A current instance of a sample created by the diffusion process.
211
+ generator (`torch.Generator`, *optional*):
212
+ A random number generator.
213
+ return_dict (`bool`, *optional*, defaults to `True`):
214
+ Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
215
+ Returns:
216
+ [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
217
+ If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
218
+ is returned where the first element is the sample tensor.
219
+ """
220
+ if self.timesteps is None:
221
+ raise ValueError(
222
+ "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
223
+ )
224
+
225
+ # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
226
+ # sample noise for correction
227
+ noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator, device=sample.device).to(sample.device)
228
+
229
+ # compute step size from the model_output, the noise, and the snr
230
+ grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean()
231
+ noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
232
+ step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
233
+ step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
234
+ # self.repeat_scalar(step_size, sample.shape[0])
235
+
236
+ # compute corrected sample: model_output term and noise term
237
+ step_size = step_size.flatten()
238
+ while len(step_size.shape) < len(sample.shape):
239
+ step_size = step_size.unsqueeze(-1)
240
+ prev_sample_mean = sample + step_size * model_output
241
+ prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
242
+
243
+ if not return_dict:
244
+ return (prev_sample,)
245
+
246
+ return SchedulerOutput(prev_sample=prev_sample)
247
+
248
+ def add_noise(
249
+ self,
250
+ original_samples: torch.FloatTensor,
251
+ noise: torch.FloatTensor,
252
+ timesteps: torch.FloatTensor,
253
+ ) -> torch.FloatTensor:
254
+ # Make sure sigmas and timesteps have the same device and dtype as original_samples
255
+ timesteps = timesteps.to(original_samples.device)
256
+ sigmas = self.config.sigma_min * (self.config.sigma_max / self.config.sigma_min) ** timesteps
257
+ noise = (
258
+ noise * sigmas[:, None, None, None]
259
+ if noise is not None
260
+ else torch.randn_like(original_samples) * sigmas[:, None, None, None]
261
+ )
262
+ noisy_samples = noise + original_samples
263
+ return noisy_samples
264
+
265
+ def __len__(self):
266
+ return self.config.num_train_timesteps