giulio98 commited on
Commit
29e1865
·
verified ·
1 Parent(s): 8f4d6dd

Update pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +0 -602
pipeline.py CHANGED
@@ -1,605 +1,3 @@
1
- from typing import List, Optional, Tuple, Union
2
-
3
- import torch
4
- from dataclasses import dataclass
5
- from typing import Optional, Tuple, Union
6
-
7
- import torch
8
- import torch.nn as nn
9
-
10
- from diffusers.configuration_utils import ConfigMixin, register_to_config
11
- from diffusers.utils import BaseOutput
12
- from diffusers.models.embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
13
- from diffusers.models.modeling_utils import ModelMixin
14
- from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
15
-
16
-
17
- @dataclass
18
- class UNet2DOutput(BaseOutput):
19
- """
20
- The output of [`UNet2DModel`].
21
- Args:
22
- sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
23
- The hidden states output from the last layer of the model.
24
- """
25
-
26
- sample: torch.FloatTensor
27
-
28
-
29
- class UNet2DModel(ModelMixin, ConfigMixin):
30
- r"""
31
- A 2D UNet model that takes a noisy sample and a timestep and returns a sample shaped output.
32
- This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
33
- for all models (such as downloading or saving).
34
- Parameters:
35
- sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
36
- Height and width of input/output sample. Dimensions must be a multiple of `2 ** (len(block_out_channels) -
37
- 1)`.
38
- in_channels (`int`, *optional*, defaults to 3): Number of channels in the input sample.
39
- out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
40
- center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
41
- time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use.
42
- freq_shift (`int`, *optional*, defaults to 0): Frequency shift for Fourier time embedding.
43
- flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
44
- Whether to flip sin to cos for Fourier time embedding.
45
- down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`):
46
- Tuple of downsample block types.
47
- mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2D"`):
48
- Block type for middle of UNet, it can be either `UNetMidBlock2D` or `UnCLIPUNetMidBlock2D`.
49
- up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`):
50
- Tuple of upsample block types.
51
- block_out_channels (`Tuple[int]`, *optional*, defaults to `(224, 448, 672, 896)`):
52
- Tuple of block output channels.
53
- layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block.
54
- mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block.
55
- downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution.
56
- downsample_type (`str`, *optional*, defaults to `conv`):
57
- The downsample type for downsampling layers. Choose between "conv" and "resnet"
58
- upsample_type (`str`, *optional*, defaults to `conv`):
59
- The upsample type for upsampling layers. Choose between "conv" and "resnet"
60
- dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
61
- act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
62
- attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension.
63
- norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for normalization.
64
- attn_norm_num_groups (`int`, *optional*, defaults to `None`):
65
- If set to an integer, a group norm layer will be created in the mid block's [`Attention`] layer with the
66
- given number of groups. If left as `None`, the group norm layer will only be created if
67
- `resnet_time_scale_shift` is set to `default`, and if created will have `norm_num_groups` groups.
68
- norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for normalization.
69
- resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
70
- for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
71
- class_embed_type (`str`, *optional*, defaults to `None`):
72
- The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
73
- `"timestep"`, or `"identity"`.
74
- num_class_embeds (`int`, *optional*, defaults to `None`):
75
- Input dimension of the learnable embedding matrix to be projected to `time_embed_dim` when performing class
76
- conditioning with `class_embed_type` equal to `None`.
77
- """
78
-
79
- @register_to_config
80
- def __init__(
81
- self,
82
- sample_size: Optional[Union[int, Tuple[int, int]]] = None,
83
- in_channels: int = 3,
84
- out_channels: int = 3,
85
- center_input_sample: bool = False,
86
- time_embedding_type: str = "positional",
87
- freq_shift: int = 0,
88
- flip_sin_to_cos: bool = True,
89
- down_block_types: Tuple[str, ...] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
90
- up_block_types: Tuple[str, ...] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"),
91
- block_out_channels: Tuple[int, ...] = (224, 448, 672, 896),
92
- layers_per_block: int = 2,
93
- mid_block_scale_factor: float = 1,
94
- downsample_padding: int = 1,
95
- downsample_type: str = "conv",
96
- upsample_type: str = "conv",
97
- dropout: float = 0.0,
98
- act_fn: str = "silu",
99
- attention_head_dim: Optional[int] = 8,
100
- norm_num_groups: int = 32,
101
- attn_norm_num_groups: Optional[int] = None,
102
- norm_eps: float = 1e-5,
103
- resnet_time_scale_shift: str = "default",
104
- add_attention: bool = True,
105
- class_embed_type: Optional[str] = None,
106
- num_class_embeds: Optional[int] = None,
107
- num_train_timesteps: Optional[int] = None,
108
- set_W_to_weight: Optional[bool] = True,
109
- ):
110
- super().__init__()
111
-
112
- self.sample_size = sample_size
113
- time_embed_dim = block_out_channels[0] * 4
114
-
115
- # Check inputs
116
- if len(down_block_types) != len(up_block_types):
117
- raise ValueError(
118
- f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
119
- )
120
-
121
- if len(block_out_channels) != len(down_block_types):
122
- raise ValueError(
123
- f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
124
- )
125
-
126
- # input
127
- self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
128
-
129
- # time
130
- if time_embedding_type == "fourier":
131
- self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16, set_W_to_weight=set_W_to_weight)
132
- timestep_input_dim = 2 * block_out_channels[0]
133
- elif time_embedding_type == "positional":
134
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
135
- timestep_input_dim = block_out_channels[0]
136
- elif time_embedding_type == "learned":
137
- self.time_proj = nn.Embedding(num_train_timesteps, block_out_channels[0])
138
- timestep_input_dim = block_out_channels[0]
139
-
140
- self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
141
-
142
- # class embedding
143
- if class_embed_type is None and num_class_embeds is not None:
144
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
145
- elif class_embed_type == "timestep":
146
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
147
- elif class_embed_type == "identity":
148
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
149
- else:
150
- self.class_embedding = None
151
-
152
- self.down_blocks = nn.ModuleList([])
153
- self.mid_block = None
154
- self.up_blocks = nn.ModuleList([])
155
-
156
- # down
157
- output_channel = block_out_channels[0]
158
- for i, down_block_type in enumerate(down_block_types):
159
- input_channel = output_channel
160
- output_channel = block_out_channels[i]
161
- is_final_block = i == len(block_out_channels) - 1
162
-
163
- down_block = get_down_block(
164
- down_block_type,
165
- num_layers=layers_per_block,
166
- in_channels=input_channel,
167
- out_channels=output_channel,
168
- temb_channels=time_embed_dim,
169
- add_downsample=not is_final_block,
170
- resnet_eps=norm_eps,
171
- resnet_act_fn=act_fn,
172
- resnet_groups=norm_num_groups,
173
- attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
174
- downsample_padding=downsample_padding,
175
- resnet_time_scale_shift=resnet_time_scale_shift,
176
- downsample_type=downsample_type,
177
- dropout=dropout,
178
- )
179
- self.down_blocks.append(down_block)
180
-
181
- # mid
182
- self.mid_block = UNetMidBlock2D(
183
- in_channels=block_out_channels[-1],
184
- temb_channels=time_embed_dim,
185
- dropout=dropout,
186
- resnet_eps=norm_eps,
187
- resnet_act_fn=act_fn,
188
- output_scale_factor=mid_block_scale_factor,
189
- resnet_time_scale_shift=resnet_time_scale_shift,
190
- attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
191
- resnet_groups=norm_num_groups,
192
- attn_groups=attn_norm_num_groups,
193
- add_attention=add_attention,
194
- )
195
-
196
- # up
197
- reversed_block_out_channels = list(reversed(block_out_channels))
198
- output_channel = reversed_block_out_channels[0]
199
- for i, up_block_type in enumerate(up_block_types):
200
- prev_output_channel = output_channel
201
- output_channel = reversed_block_out_channels[i]
202
- input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
203
-
204
- is_final_block = i == len(block_out_channels) - 1
205
-
206
- up_block = get_up_block(
207
- up_block_type,
208
- num_layers=layers_per_block + 1,
209
- in_channels=input_channel,
210
- out_channels=output_channel,
211
- prev_output_channel=prev_output_channel,
212
- temb_channels=time_embed_dim,
213
- add_upsample=not is_final_block,
214
- resnet_eps=norm_eps,
215
- resnet_act_fn=act_fn,
216
- resnet_groups=norm_num_groups,
217
- attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
218
- resnet_time_scale_shift=resnet_time_scale_shift,
219
- upsample_type=upsample_type,
220
- dropout=dropout,
221
- )
222
- self.up_blocks.append(up_block)
223
- prev_output_channel = output_channel
224
-
225
- # out
226
- num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
227
- self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps)
228
- self.conv_act = nn.SiLU()
229
- self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
230
-
231
- def forward(
232
- self,
233
- sample: torch.FloatTensor,
234
- timestep: Union[torch.Tensor, float, int],
235
- class_labels: Optional[torch.Tensor] = None,
236
- return_dict: bool = True,
237
- ) -> Union[UNet2DOutput, Tuple]:
238
- r"""
239
- The [`UNet2DModel`] forward method.
240
- Args:
241
- sample (`torch.FloatTensor`):
242
- The noisy input tensor with the following shape `(batch, channel, height, width)`.
243
- timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
244
- class_labels (`torch.FloatTensor`, *optional*, defaults to `None`):
245
- Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
246
- return_dict (`bool`, *optional*, defaults to `True`):
247
- Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple.
248
- Returns:
249
- [`~models.unet_2d.UNet2DOutput`] or `tuple`:
250
- If `return_dict` is True, an [`~models.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is
251
- returned where the first element is the sample tensor.
252
- """
253
- # 0. center input if necessary
254
- if self.config.center_input_sample:
255
- sample = 2 * sample - 1.0
256
-
257
- # 1. time
258
- timesteps = timestep
259
- if not torch.is_tensor(timesteps):
260
- timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
261
- elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
262
- timesteps = timesteps[None].to(sample.device)
263
-
264
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
265
- timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)
266
-
267
- t_emb = self.time_proj(timesteps)
268
-
269
- # timesteps does not contain any weights and will always return f32 tensors
270
- # but time_embedding might actually be running in fp16. so we need to cast here.
271
- # there might be better ways to encapsulate this.
272
- t_emb = t_emb.to(dtype=self.dtype)
273
- emb = self.time_embedding(t_emb)
274
-
275
- if self.class_embedding is not None:
276
- if class_labels is None:
277
- raise ValueError("class_labels should be provided when doing class conditioning")
278
-
279
- if self.config.class_embed_type == "timestep":
280
- class_labels = self.time_proj(class_labels)
281
-
282
- class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
283
- emb = emb + class_emb
284
- elif self.class_embedding is None and class_labels is not None:
285
- raise ValueError("class_embedding needs to be initialized in order to use class conditioning")
286
-
287
- # 2. pre-process
288
- skip_sample = sample
289
- sample = self.conv_in(sample)
290
-
291
- # 3. down
292
- down_block_res_samples = (sample,)
293
- for downsample_block in self.down_blocks:
294
- if hasattr(downsample_block, "skip_conv"):
295
- sample, res_samples, skip_sample = downsample_block(
296
- hidden_states=sample, temb=emb, skip_sample=skip_sample
297
- )
298
- else:
299
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
300
-
301
- down_block_res_samples += res_samples
302
-
303
- # 4. mid
304
- sample = self.mid_block(sample, emb)
305
-
306
- # 5. up
307
- skip_sample = None
308
- for upsample_block in self.up_blocks:
309
- res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
310
- down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
311
-
312
- if hasattr(upsample_block, "skip_conv"):
313
- sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
314
- else:
315
- sample = upsample_block(sample, res_samples, emb)
316
-
317
- # 6. post-process
318
- sample = self.conv_norm_out(sample)
319
- sample = self.conv_act(sample)
320
- sample = self.conv_out(sample)
321
-
322
- if skip_sample is not None:
323
- sample += skip_sample
324
-
325
- if self.config.time_embedding_type == "fourier":
326
- timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
327
- sample = sample / timesteps
328
-
329
- if not return_dict:
330
- return (sample,)
331
-
332
- return UNet2DOutput(sample=sample)
333
-
334
- import math
335
-
336
- from dataclasses import dataclass
337
- from typing import Optional, Tuple, Union
338
- import torch
339
- from diffusers.configuration_utils import ConfigMixin, register_to_config
340
- from diffusers.utils import BaseOutput
341
- from diffusers.utils.torch_utils import randn_tensor
342
- from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
343
-
344
- @dataclass
345
- class SdeVeOutput(BaseOutput):
346
- """
347
- Output class for the scheduler's `step` function output.
348
- Args:
349
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
350
- Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
351
- denoising loop.
352
- prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
353
- Mean averaged `prev_sample` over previous timesteps.
354
- """
355
-
356
- prev_sample: torch.FloatTensor
357
- prev_sample_mean: torch.FloatTensor
358
-
359
-
360
- class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
361
- """
362
- `ScoreSdeVeScheduler` is a variance exploding stochastic differential equation (SDE) scheduler.
363
- This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
364
- methods the library implements for all schedulers such as loading and saving.
365
- Args:
366
- num_train_timesteps (`int`, defaults to 1000):
367
- The number of diffusion steps to train the model.
368
- snr (`float`, defaults to 0.15):
369
- A coefficient weighting the step from the `model_output` sample (from the network) to the random noise.
370
- sigma_min (`float`, defaults to 0.01):
371
- The initial noise scale for the sigma sequence in the sampling procedure. The minimum sigma should mirror
372
- the distribution of the data.
373
- sigma_max (`float`, defaults to 1348.0):
374
- The maximum value used for the range of continuous timesteps passed into the model.
375
- sampling_eps (`float`, defaults to 1e-5):
376
- The end value of sampling where timesteps decrease progressively from 1 to epsilon.
377
- correct_steps (`int`, defaults to 1):
378
- The number of correction steps performed on a produced sample.
379
- """
380
-
381
- order = 1
382
-
383
- @register_to_config
384
- def __init__(
385
- self,
386
- num_train_timesteps: int = 2000,
387
- snr: float = 0.15,
388
- sigma_min: float = 0.01,
389
- sigma_max: float = 1348.0,
390
- sampling_eps: float = 1e-5,
391
- correct_steps: int = 1,
392
- ):
393
- # standard deviation of the initial noise distribution
394
- self.init_noise_sigma = sigma_max
395
-
396
- # setable values
397
- self.timesteps = None
398
-
399
- self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
400
-
401
- def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
402
- """
403
- Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
404
- current timestep.
405
- Args:
406
- sample (`torch.FloatTensor`):
407
- The input sample.
408
- timestep (`int`, *optional*):
409
- The current timestep in the diffusion chain.
410
- Returns:
411
- `torch.FloatTensor`:
412
- A scaled input sample.
413
- """
414
- return sample
415
-
416
- def set_timesteps(
417
- self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None
418
- ):
419
- """
420
- Sets the continuous timesteps used for the diffusion chain (to be run before inference).
421
- Args:
422
- num_inference_steps (`int`):
423
- The number of diffusion steps used when generating samples with a pre-trained model.
424
- sampling_eps (`float`, *optional*):
425
- The final timestep value (overrides value given during scheduler instantiation).
426
- device (`str` or `torch.device`, *optional*):
427
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
428
- """
429
- sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
430
-
431
- self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device)
432
-
433
- def set_sigmas(
434
- self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None
435
- ):
436
- """
437
- Sets the noise scales used for the diffusion chain (to be run before inference). The sigmas control the weight
438
- of the `drift` and `diffusion` components of the sample update.
439
- Args:
440
- num_inference_steps (`int`):
441
- The number of diffusion steps used when generating samples with a pre-trained model.
442
- sigma_min (`float`, optional):
443
- The initial noise scale value (overrides value given during scheduler instantiation).
444
- sigma_max (`float`, optional):
445
- The final noise scale value (overrides value given during scheduler instantiation).
446
- sampling_eps (`float`, optional):
447
- The final timestep value (overrides value given during scheduler instantiation).
448
- """
449
- sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
450
- sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
451
- sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
452
- if self.timesteps is None:
453
- self.set_timesteps(num_inference_steps, sampling_eps)
454
-
455
- self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
456
- self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps))
457
- self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
458
-
459
- def get_adjacent_sigma(self, timesteps, t):
460
- return torch.where(
461
- timesteps == 0,
462
- torch.zeros_like(t.to(timesteps.device)),
463
- self.discrete_sigmas[timesteps - 1].to(timesteps.device),
464
- )
465
-
466
- def step_pred(
467
- self,
468
- model_output: torch.FloatTensor,
469
- timestep: int,
470
- sample: torch.FloatTensor,
471
- generator: Optional[torch.Generator] = None,
472
- return_dict: bool = True,
473
- ) -> Union[SdeVeOutput, Tuple]:
474
- """
475
- Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
476
- process from the learned model outputs (most often the predicted noise).
477
- Args:
478
- model_output (`torch.FloatTensor`):
479
- The direct output from learned diffusion model.
480
- timestep (`int`):
481
- The current discrete timestep in the diffusion chain.
482
- sample (`torch.FloatTensor`):
483
- A current instance of a sample created by the diffusion process.
484
- generator (`torch.Generator`, *optional*):
485
- A random number generator.
486
- return_dict (`bool`, *optional*, defaults to `True`):
487
- Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
488
- Returns:
489
- [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
490
- If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
491
- is returned where the first element is the sample tensor.
492
- """
493
- if self.timesteps is None:
494
- raise ValueError(
495
- "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
496
- )
497
-
498
- timestep = timestep * torch.ones(
499
- sample.shape[0], device=sample.device
500
- ) # torch.repeat_interleave(timestep, sample.shape[0])
501
- timesteps = (timestep * (len(self.timesteps) - 1)).long()
502
-
503
- # mps requires indices to be in the same device, so we use cpu as is the default with cuda
504
- timesteps = timesteps.to(self.discrete_sigmas.device)
505
-
506
- sigma = self.discrete_sigmas[timesteps].to(sample.device)
507
- adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device)
508
- drift = torch.zeros_like(sample)
509
- diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5
510
-
511
- # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
512
- # also equation 47 shows the analog from SDE models to ancestral sampling methods
513
- diffusion = diffusion.flatten()
514
- while len(diffusion.shape) < len(sample.shape):
515
- diffusion = diffusion.unsqueeze(-1)
516
- drift = drift - diffusion**2 * model_output
517
-
518
- # equation 6: sample noise for the diffusion term of
519
- noise = randn_tensor(
520
- sample.shape, layout=sample.layout, generator=generator, device=sample.device, dtype=sample.dtype
521
- )
522
- prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep
523
- # TODO is the variable diffusion the correct scaling term for the noise?
524
- prev_sample = prev_sample_mean + diffusion * noise # add impact of diffusion field g
525
-
526
- if not return_dict:
527
- return (prev_sample, prev_sample_mean)
528
-
529
- return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean)
530
-
531
- def step_correct(
532
- self,
533
- model_output: torch.FloatTensor,
534
- sample: torch.FloatTensor,
535
- generator: Optional[torch.Generator] = None,
536
- return_dict: bool = True,
537
- ) -> Union[SchedulerOutput, Tuple]:
538
- """
539
- Correct the predicted sample based on the `model_output` of the network. This is often run repeatedly after
540
- making the prediction for the previous timestep.
541
- Args:
542
- model_output (`torch.FloatTensor`):
543
- The direct output from learned diffusion model.
544
- sample (`torch.FloatTensor`):
545
- A current instance of a sample created by the diffusion process.
546
- generator (`torch.Generator`, *optional*):
547
- A random number generator.
548
- return_dict (`bool`, *optional*, defaults to `True`):
549
- Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`.
550
- Returns:
551
- [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`:
552
- If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple
553
- is returned where the first element is the sample tensor.
554
- """
555
- if self.timesteps is None:
556
- raise ValueError(
557
- "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
558
- )
559
-
560
- # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
561
- # sample noise for correction
562
- noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator, device=sample.device).to(sample.device)
563
-
564
- # compute step size from the model_output, the noise, and the snr
565
- grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean()
566
- noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
567
- step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
568
- step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
569
- # self.repeat_scalar(step_size, sample.shape[0])
570
-
571
- # compute corrected sample: model_output term and noise term
572
- step_size = step_size.flatten()
573
- while len(step_size.shape) < len(sample.shape):
574
- step_size = step_size.unsqueeze(-1)
575
- prev_sample_mean = sample + step_size * model_output
576
- prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
577
-
578
- if not return_dict:
579
- return (prev_sample,)
580
-
581
- return SchedulerOutput(prev_sample=prev_sample)
582
-
583
- def add_noise(
584
- self,
585
- original_samples: torch.FloatTensor,
586
- noise: torch.FloatTensor,
587
- timesteps: torch.FloatTensor,
588
- ) -> torch.FloatTensor:
589
- # Make sure sigmas and timesteps have the same device and dtype as original_samples
590
- timesteps = timesteps.to(original_samples.device)
591
- sigmas = self.config.sigma_min * (self.config.sigma_max / self.config.sigma_min) ** timesteps
592
- noise = (
593
- noise * sigmas[:, None, None, None]
594
- if noise is not None
595
- else torch.randn_like(original_samples) * sigmas[:, None, None, None]
596
- )
597
- noisy_samples = noise + original_samples
598
- return noisy_samples
599
-
600
- def __len__(self):
601
- return self.config.num_train_timesteps
602
-
603
  from diffusers.utils.torch_utils import randn_tensor
604
  from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from diffusers.utils.torch_utils import randn_tensor
2
  from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
3