Create pipeline.py
Browse files- pipeline.py +211 -0
pipeline.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Union, List, Tuple, Callable
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 5 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
| 6 |
+
|
| 7 |
+
class KarrasEDMConditionalPipeline(DiffusionPipeline):
|
| 8 |
+
r"""
|
| 9 |
+
Pipeline for unconditional or class-conditional image generation based on the EDM model from [1].
|
| 10 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
| 11 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
| 12 |
+
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
|
| 13 |
+
https://arxiv.org/abs/2206.00364
|
| 14 |
+
Args:
|
| 15 |
+
unet ([`UNet2DModel`]):
|
| 16 |
+
A `UNet2DModel` to denoise the encoded image latents.
|
| 17 |
+
scheduler ([`SchedulerMixin`]):
|
| 18 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only
|
| 19 |
+
supports KarrasEDMScheduler.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
model_cpu_offload_seq = "unet"
|
| 23 |
+
|
| 24 |
+
def __init__(self, unet, scheduler) -> None:
|
| 25 |
+
super().__init__()
|
| 26 |
+
|
| 27 |
+
self.register_modules(
|
| 28 |
+
unet=unet,
|
| 29 |
+
scheduler=scheduler,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
self.safety_checker = None
|
| 33 |
+
|
| 34 |
+
def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None):
|
| 35 |
+
shape = (batch_size, num_channels, height, width)
|
| 36 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 37 |
+
raise ValueError(
|
| 38 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 39 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
if latents is None:
|
| 43 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 44 |
+
else:
|
| 45 |
+
latents = latents.to(device=device, dtype=dtype)
|
| 46 |
+
|
| 47 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 48 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 49 |
+
return latents
|
| 50 |
+
|
| 51 |
+
# Follows diffusers.VaeImageProcessor.postprocess
|
| 52 |
+
def postprocess_image(self, sample: torch.FloatTensor, output_type: str = "pil"):
|
| 53 |
+
if output_type not in ["pt", "np", "pil"]:
|
| 54 |
+
raise ValueError(
|
| 55 |
+
f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']"
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Equivalent to diffusers.VaeImageProcessor.denormalize
|
| 59 |
+
sample = (sample / 2 + 0.5).clamp(0, 1)
|
| 60 |
+
if output_type == "pt":
|
| 61 |
+
return sample
|
| 62 |
+
|
| 63 |
+
# Equivalent to diffusers.VaeImageProcessor.pt_to_numpy
|
| 64 |
+
sample = sample.cpu().permute(0, 2, 3, 1).numpy()
|
| 65 |
+
if output_type == "np":
|
| 66 |
+
return sample
|
| 67 |
+
|
| 68 |
+
# Output_type must be 'pil'
|
| 69 |
+
sample = self.numpy_to_pil(sample)
|
| 70 |
+
return sample
|
| 71 |
+
|
| 72 |
+
def check_inputs(self, num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps):
|
| 73 |
+
if num_inference_steps is None and timesteps is None:
|
| 74 |
+
raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")
|
| 75 |
+
|
| 76 |
+
if num_inference_steps is not None and timesteps is not None:
|
| 77 |
+
logger.warning(
|
| 78 |
+
f"Both `num_inference_steps`: {num_inference_steps} and `timesteps`: {timesteps} are supplied;"
|
| 79 |
+
" `timesteps` will be used over `num_inference_steps`."
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
if latents is not None:
|
| 83 |
+
expected_shape = (batch_size, 3, img_size, img_size)
|
| 84 |
+
if latents.shape != expected_shape:
|
| 85 |
+
raise ValueError(f"The shape of latents is {latents.shape} but is expected to be {expected_shape}.")
|
| 86 |
+
|
| 87 |
+
if (callback_steps is None) or (
|
| 88 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 89 |
+
):
|
| 90 |
+
raise ValueError(
|
| 91 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 92 |
+
f" {type(callback_steps)}."
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
@torch.no_grad()
|
| 96 |
+
def __call__(
|
| 97 |
+
self,
|
| 98 |
+
batch_size: int = 1,
|
| 99 |
+
num_inference_steps: int = 1,
|
| 100 |
+
timesteps: List[int] = None,
|
| 101 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 102 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 103 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 104 |
+
output_type: Optional[str] = "pil",
|
| 105 |
+
return_dict: bool = True,
|
| 106 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 107 |
+
callback_steps: int = 1,
|
| 108 |
+
):
|
| 109 |
+
r"""
|
| 110 |
+
Args:
|
| 111 |
+
batch_size (`int`, *optional*, defaults to 1):
|
| 112 |
+
The number of images to generate.
|
| 113 |
+
class_labels (`torch.Tensor` or `List[int]` or `int`, *optional*):
|
| 114 |
+
Optional class labels for conditioning class-conditional consistency models. Not used if the model is
|
| 115 |
+
not class-conditional.
|
| 116 |
+
num_inference_steps (`int`, *optional*, defaults to 1):
|
| 117 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 118 |
+
expense of slower inference.
|
| 119 |
+
timesteps (`List[int]`, *optional*):
|
| 120 |
+
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
| 121 |
+
timesteps are used. Must be in descending order.
|
| 122 |
+
generator (`torch.Generator`, *optional*):
|
| 123 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 124 |
+
generation deterministic.
|
| 125 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 126 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
| 127 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 128 |
+
tensor is generated by sampling using the supplied random `generator`.
|
| 129 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 130 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 131 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 132 |
+
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
|
| 133 |
+
callback (`Callable`, *optional*):
|
| 134 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
| 135 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 136 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 137 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
| 138 |
+
every step.
|
| 139 |
+
Examples:
|
| 140 |
+
Returns:
|
| 141 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
| 142 |
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
| 143 |
+
returned where the first element is a list with the generated images.
|
| 144 |
+
"""
|
| 145 |
+
# 0. Prepare call parameters
|
| 146 |
+
img_size = self.unet.config.sample_size
|
| 147 |
+
device = self._execution_device
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# 2. Prepare image latents
|
| 152 |
+
# Sample image latents x_0 ~ N(0, sigma_0^2 * I)
|
| 153 |
+
sample = self.prepare_latents(
|
| 154 |
+
batch_size=batch_size,
|
| 155 |
+
num_channels=self.unet.config.in_channels,
|
| 156 |
+
height=img_size,
|
| 157 |
+
width=img_size,
|
| 158 |
+
dtype=self.unet.dtype,
|
| 159 |
+
device=device,
|
| 160 |
+
generator=generator,
|
| 161 |
+
latents=latents,
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
# 4. Prepare timesteps
|
| 165 |
+
if timesteps is not None:
|
| 166 |
+
self.scheduler.set_timesteps(timesteps=timesteps, device=device)
|
| 167 |
+
timesteps = self.scheduler.timesteps
|
| 168 |
+
num_inference_steps = len(timesteps)
|
| 169 |
+
else:
|
| 170 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
| 171 |
+
timesteps = self.scheduler.timesteps
|
| 172 |
+
|
| 173 |
+
# 5. Denoising loop
|
| 174 |
+
# Implements the "EDM" column in Table 1 of the EDM paper
|
| 175 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 176 |
+
|
| 177 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 178 |
+
for i, t in enumerate(timesteps):
|
| 179 |
+
# 1. Add noise (if necessary) and precondition the input sample.
|
| 180 |
+
scaled_sample = self.scheduler.scale_model_input(sample, t)
|
| 181 |
+
|
| 182 |
+
if self.scheduler.step_index is None:
|
| 183 |
+
self.scheduler._init_step_index(t)
|
| 184 |
+
|
| 185 |
+
sigma = self.scheduler.sigmas[self.scheduler.step_index]
|
| 186 |
+
|
| 187 |
+
sigma_input = self.scheduler.precondition_noise(sigma)
|
| 188 |
+
|
| 189 |
+
# 2. Evaluate neural network at higher noise level (sample_hat, sigma_hat).
|
| 190 |
+
model_output = self.unet(scaled_sample, sigma_input.squeeze(), class_labels, return_dict=False)[0]
|
| 191 |
+
|
| 192 |
+
# 3. Apply output preconditioning on model_output to get denoiser output
|
| 193 |
+
# 4. Take either a first order (Euler) step or second order (Heun) step
|
| 194 |
+
sample = self.scheduler.step(model_output, t, sample).prev_sample
|
| 195 |
+
|
| 196 |
+
# call the callback, if provided
|
| 197 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 198 |
+
progress_bar.update()
|
| 199 |
+
if callback is not None and i % callback_steps == 0:
|
| 200 |
+
callback(i, t, latents)
|
| 201 |
+
|
| 202 |
+
# 6. Post-process image sample
|
| 203 |
+
image = self.postprocess_image(sample, output_type=output_type)
|
| 204 |
+
|
| 205 |
+
# Offload all models
|
| 206 |
+
self.maybe_free_model_hooks()
|
| 207 |
+
|
| 208 |
+
if not return_dict:
|
| 209 |
+
return (image,)
|
| 210 |
+
|
| 211 |
+
return ImagePipelineOutput(images=image)
|