File size: 2,303 Bytes
8e93305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from typing import Dict, List, Any
import json
import torch
from transformers import BertTokenizerFast, BertForTokenClassification

class EndpointHandler():
    def __init__(self, path=""):
        # Load the tokenizer and model
        self.tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
        self.model = BertForTokenClassification.from_pretrained(path)
        self.model.eval()
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.model.to(self.device)
        
        # ID to label mapping
        self.id2label = {
            0: 'O',
            1: 'B-STEREO',
            2: 'I-STEREO',
            3: 'B-GEN',
            4: 'I-GEN',
            5: 'B-UNFAIR',
            6: 'I-UNFAIR'
        }

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        Args:
            data (Dict[str, Any]): A dictionary containing the input text under 'inputs'.

        Returns:
            List[Dict[str, Any]]: A list of dictionaries with token labels.
        """
        # Extract the input sentence
        sentence = data.get("inputs", "")
        if not sentence:
            return [{"error": "Input 'inputs' is required."}]

        # Tokenize the input sentence
        inputs = self.tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
        input_ids = inputs['input_ids'].to(self.device)
        attention_mask = inputs['attention_mask'].to(self.device)

        # Run inference
        with torch.no_grad():
            outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
            logits = outputs.logits
            probabilities = torch.sigmoid(logits)
            predicted_labels = (probabilities > 0.5).int()

        # Prepare the result
        result = []
        tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
        for i, token in enumerate(tokens):
            if token not in self.tokenizer.all_special_tokens:
                label_indices = (predicted_labels[0][i] == 1).nonzero(as_tuple=False).squeeze(-1)
                labels = [self.id2label[idx.item()] for idx in label_indices] if label_indices.numel() > 0 else ['O']
                result.append({"token": token, "labels": labels})

        return result