erikbranmarino commited on
Commit
84c8d2d
·
verified ·
1 Parent(s): b47e2cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -3
README.md CHANGED
@@ -1,11 +1,20 @@
1
  ---
2
- language: multilingual
 
 
 
 
3
  tags:
4
  - conspiracy-detection
5
  - content-moderation
6
  - bert
7
  - prct
8
  - social-media
 
 
 
 
 
9
  license: mit
10
  datasets:
11
  - custom
@@ -14,14 +23,78 @@ metrics:
14
  - f1
15
  - precision
16
  - recall
 
 
 
 
 
 
 
 
 
 
 
17
  ---
18
 
19
- # CT-BERT-PRCT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  ## Model description
22
 
23
  CT-BERT-PRCT is a fine-tuned version of CT-BERT specifically adapted for detecting Population Replacement Conspiracy Theory (PRCT) content across social media platforms. The model has been trained to identify both explicit and implicit PRCT narratives while maintaining robust cross-platform generalization capabilities.
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ## Intended uses & limitations
26
 
27
  ### Intended uses
@@ -71,6 +144,32 @@ Detailed performance metrics:
71
 
72
  The model demonstrates strong performance on its primary training domain (YouTube - English) while maintaining reasonable effectiveness in cross-platform and multilingual scenarios (Telegram - Portuguese and Spanish), showing good generalization capabilities across different social media environments.
73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  ## Example Usage
75
 
76
  ```python
@@ -164,4 +263,5 @@ If you use this model, please cite:
164
 
165
  ## Contact
166
 
167
- Erik Bran Marino ([email protected])
 
 
1
  ---
2
+ language:
3
+ - multilingual
4
+ - en
5
+ - es
6
+ - pt
7
  tags:
8
  - conspiracy-detection
9
  - content-moderation
10
  - bert
11
  - prct
12
  - social-media
13
+ - misinformation
14
+ - hate-speech
15
+ - PRCT
16
+ - cross-platform
17
+ - multilingual-classification
18
  license: mit
19
  datasets:
20
  - custom
 
23
  - f1
24
  - precision
25
  - recall
26
+ widget:
27
+ - text: Immigration is necessary for economic growth and demographic balance.
28
+ example_title: Non-PRCT Example
29
+ - text: >-
30
+ They are deliberately replacing us with foreigners to change voting
31
+ patterns.
32
+ example_title: PRCT Example
33
+ pipeline_tag: text-classification
34
+ base_model:
35
+ - digitalepidemiologylab/covid-twitter-bert-v2
36
+ library_name: transformers
37
  ---
38
 
39
+ <div align="center">
40
+
41
+ # 🔍 CT-BERT-PRCT
42
+
43
+ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/bert-arquitecture.png" width="600"/>
44
+
45
+ **A specialized BERT model for detection of Population Replacement Conspiracy Theory content**
46
+
47
+ [![Model on Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-CT--BERT--PRCT-blue)](https://huggingface.co/erikbranmarino/CT-BERT-PRCT)
48
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
49
+
50
+ </div>
51
+
52
+ ## Overview
53
+
54
+ <table>
55
+ <tr>
56
+ <td>
57
+ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/social-thumbnails/transformers-v4.0.0.png" width="240" />
58
+ </td>
59
+ <td>
60
+ <b>CT-BERT-PRCT</b> is a fine-tuned BERT model for detecting Population Replacement Conspiracy Theory content across multiple platforms and languages. <br/><br/>
61
+ <b>Key metrics:</b>
62
+ <ul>
63
+ <li>YouTube Accuracy: 83.8%</li>
64
+ <li>Telegram Accuracy: 71.9%</li>
65
+ <li>Cross-platform F1: 71.2%</li>
66
+ </ul>
67
+ </td>
68
+ </tr>
69
+ </table>
70
 
71
  ## Model description
72
 
73
  CT-BERT-PRCT is a fine-tuned version of CT-BERT specifically adapted for detecting Population Replacement Conspiracy Theory (PRCT) content across social media platforms. The model has been trained to identify both explicit and implicit PRCT narratives while maintaining robust cross-platform generalization capabilities.
74
 
75
+ ## Performance Visualization
76
+
77
+ <div align="center">
78
+ <img src="https://quickchart.io/chart?c={type:'radar',data:{labels:['Accuracy','Precision','Recall','F1-score'],datasets:[{label:'YouTube',data:[83.8,86.5,83.3,83.3],backgroundColor:'rgba(54,162,235,0.2)',borderColor:'rgb(54,162,235)'},{label:'Telegram',data:[71.9,74.2,71.9,71.2],backgroundColor:'rgba(255,99,132,0.2)',borderColor:'rgb(255,99,132)'}]}}" width="450" />
79
+ </div>
80
+
81
+ ## Model Configuration
82
+
83
+ ### Label Mapping
84
+ - 0: Non-PRCT content
85
+ - 1: PRCT content
86
+
87
+ ### Model Architecture
88
+ - Base model: CT-BERT
89
+ - Hidden layers: 12
90
+ - Attention heads: 12
91
+ - Parameters: 110M
92
+
93
+ ### Input Requirements
94
+ - Maximum sequence length: 512 tokens
95
+ - Input type: Text (strings)
96
+ - Preprocessing: Standard BERT tokenization
97
+
98
  ## Intended uses & limitations
99
 
100
  ### Intended uses
 
144
 
145
  The model demonstrates strong performance on its primary training domain (YouTube - English) while maintaining reasonable effectiveness in cross-platform and multilingual scenarios (Telegram - Portuguese and Spanish), showing good generalization capabilities across different social media environments.
146
 
147
+ ## Example Predictions
148
+
149
+ Here are some example texts and how the model classifies them:
150
+
151
+ | Example Text | Prediction | Confidence |
152
+ |-------------|------------|------------|
153
+ | "Immigration policies should be decided based on economic needs and humanitarian considerations." | Non-PRCT | 0.96 |
154
+ | "We need more controlled immigration to match our labor market demands." | Non-PRCT | 0.92 |
155
+ | "European countries must protect their cultural identity while respecting diverse backgrounds." | Non-PRCT | 0.78 |
156
+ | "Politicians are secretly working to change our demographics." | PRCT | 0.85 |
157
+ | "They're bringing in foreigners to replace native voters." | PRCT | 0.94 |
158
+ | "The elites have a plan to erase our culture through mass immigration." | PRCT | 0.97 |
159
+
160
+ *Note: These examples are simplified for illustration. The model evaluates nuanced content in context.*
161
+
162
+ ## Online Demo
163
+
164
+ Try the model directly in your browser using the Hugging Face Inference API:
165
+
166
+ 1. Go to the [model page](https://huggingface.co/erikbranmarino/CT-BERT-PRCT)
167
+ 2. Navigate to the "Inference API" tab
168
+ 3. Type or paste text into the input field
169
+ 4. Click "Compute" to see the model's prediction
170
+
171
+ You can also integrate the API into your applications using the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
172
+
173
  ## Example Usage
174
 
175
  ```python
 
263
 
264
  ## Contact
265
 
266
+ Erik Bran Marino ([email protected])
267
+ ```