File size: 6,807 Bytes
86b5e8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# flake8: noqa
"""
pip install -U transformers accelerate trl wandb wheel packaging peft bitsandbytes liger-kernel flash_attn

python sft.py \
    --run_name="llama3.1-8b-continued2" \
    --model_name_or_path="meta-llama/Meta-Llama-3.1-8B" \
    --dataset_name="mlfoundations/dclm-baseline-1.0-parquet,mlabonne/FineTome-100k" \
    --report_to="wandb" \
    --optim="adamw_torch_fused" \
    --lr_scheduler_type="cosine" \
    --max_steps=10000000 \
    --max_seq_length=64000 \
    --learning_rate=0.0001 \
    --attn_implementation="flash_attention_2" \
    --save_strategy="steps" \
    --save_steps 50 \
    --save_total_limit=10 \
    --per_device_train_batch_size=1 \
    --gradient_accumulation_steps=8 \
    --logging_steps=1 \
    --num_train_epochs=1 \
    --load_in_4bit \
    --push_to_hub \
    --hub_model_id="ericflo/Llama-3.1-8B-ContinuedTraining2-LoRA" \
    --hub_strategy="all_checkpoints" \
    --gradient_checkpointing \
    --use_peft \
    --lora_r=128 \
    --lora_alpha=256 \
    --lora_dropout=0.05 \
    --use_liger=true \
    --packing=true \
    --torch_dtype="bfloat16" \
    --output_dir="continuedtraining2_output"
"""

import logging
import os
import random
from contextlib import nullcontext

from trl.commands.cli_utils import init_zero_verbose, SFTScriptArguments, TrlParser
from trl.env_utils import strtobool

TRL_USE_RICH = strtobool(os.getenv("TRL_USE_RICH", "0"))

if TRL_USE_RICH:
    init_zero_verbose()
    FORMAT = "%(message)s"

    from rich.console import Console
    from rich.logging import RichHandler

import torch
from datasets import load_dataset, interleave_datasets

from tqdm.rich import tqdm
from transformers import AutoTokenizer

from trl import (
    ModelConfig,
    RichProgressCallback,
    SFTConfig,
    SFTTrainer,
    get_peft_config,
    get_quantization_config,
    get_kbit_device_map,
)

tqdm.pandas()

if TRL_USE_RICH:
    logging.basicConfig(format=FORMAT, datefmt="[%X]", handlers=[RichHandler()], level=logging.INFO)

print("Loading tokenizers...")
METAML_TOK = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
CHATML_TOK = AutoTokenizer.from_pretrained("NousResearch/Hermes-3-Llama-3.1-8B")
print("Tokenizers loaded.")

def formatting_prompts_func(example):
    try:
        language = example.get('language')
        url = example.get('url')
        text = example.get('text')
        title = example.get('title')
        conversations = example.get('conversations')
        source = example.get('source')
        repo_name = example.get('max_stars_repo_name')
        repo_path = example.get('max_stars_repo_path')
        star_count = example.get('max_stars_count')
        content = example.get('content')
        # mlfoundations/dclm-baseline-1.0-parquet
        if language and url and text:
            return f'{language} {url} {text}'
        elif title and url and text: # wikimedia/wikipedia
            return f'{title} {url} {text}'
        elif conversations: # mlabonne/FineTome-100k
            rows = [{
                "role": {"system": "system", "gpt": "assistant", "human": "user"}[row["from"]],
                "content": row["value"],
            } for row in conversations]
            tok = random.choice([METAML_TOK, CHATML_TOK])
            return f'{source} {tok.apply_chat_template(rows, tokenize=False)}'
        elif "max_stars_repo_name" in example: # bigcode/starcoderdata
            return f'{example["max_stars_repo_name"]} {example["max_stars_repo_path"]} {example["max_stars_count"]} {example["content"]}'
        print(f"Unknown example: {example}")
        raise ValueError(f"Unknown example: {example}")
    except Exception as e:
        print(e)
        raise e

if __name__ == "__main__":
    parser = TrlParser((SFTScriptArguments, SFTConfig, ModelConfig))
    args, training_args, model_config = parser.parse_args_and_config()

    # Force use our print callback
    if TRL_USE_RICH:
        training_args.disable_tqdm = True
        console = Console()

    ################
    # Model init kwargs & Tokenizer
    ################
    model_config.lora_target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
    quantization_config = get_quantization_config(model_config)
    model_kwargs = dict(
        revision=model_config.model_revision,
        trust_remote_code=model_config.trust_remote_code,
        attn_implementation=model_config.attn_implementation,
        torch_dtype=model_config.torch_dtype,
        use_cache=False if training_args.gradient_checkpointing else True,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
    )
    training_args.model_init_kwargs = model_kwargs
    tokenizer = AutoTokenizer.from_pretrained(
        model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True
    )
    tokenizer.pad_token = tokenizer.eos_token

    ################
    # Dataset
    ################
    dataset_names = args.dataset_name.split(',')
    train_datasets = [load_dataset(name, split="train", streaming=True) for name in dataset_names]
    train_datasets.append(load_dataset("bigcode/starcoderdata", data_dir="python", split="train", streaming=True))
    train_datasets.append(load_dataset("wikimedia/wikipedia", "20231101.en", split="train", streaming=True))
    train_datasets.append(load_dataset("wikimedia/wikipedia", "20231101.es", split="train", streaming=True))
    train_datasets.append(load_dataset("wikimedia/wikipedia", "20231101.fr", split="train", streaming=True))
    interleaved_dataset = interleave_datasets(train_datasets)
    eval_dataset = interleaved_dataset.take(100)
    train_dataset = interleaved_dataset.skip(100)

    print(train_dataset)
    print(eval_dataset)

    ################
    # Optional rich context managers
    ###############
    init_context = nullcontext() if not TRL_USE_RICH else console.status("[bold green]Initializing the SFTTrainer...")
    save_context = (
        nullcontext()
        if not TRL_USE_RICH
        else console.status(f"[bold green]Training completed! Saving the model to {training_args.output_dir}")
    )

    ################
    # Training
    ################
    with init_context:
        trainer = SFTTrainer(
            model=model_config.model_name_or_path,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            tokenizer=tokenizer,
            peft_config=get_peft_config(model_config),
            callbacks=[RichProgressCallback] if TRL_USE_RICH else None,
            formatting_func=formatting_prompts_func,
        )

    trainer.train()

    with save_context:
        trainer.save_model(training_args.output_dir)