File size: 2,342 Bytes
a03f4b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
language:
- sw
base_model: eolang/whisper-small-sw-WER-13-zindi
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Small re-tuned_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small re-tuned_1

This model is a fine-tuned version of [eolang/whisper-small-sw-WER-13-zindi](https://huggingface.co/eolang/whisper-small-sw-WER-13-zindi) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8944
- Wer Ortho: 40.9465
- Wer: 39.9160

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss | Wer Ortho | Wer     |
|:-------------:|:--------:|:----:|:---------------:|:---------:|:-------:|
| 0.0018        | 41.6667  | 500  | 1.6457          | 45.0617   | 43.6975 |
| 0.0011        | 83.3333  | 1000 | 1.7081          | 46.5021   | 45.3782 |
| 0.0009        | 125.0    | 1500 | 1.7469          | 67.9012   | 67.2269 |
| 0.0009        | 166.6667 | 2000 | 1.7766          | 68.9300   | 68.2773 |
| 0.0009        | 208.3333 | 2500 | 1.8003          | 70.3704   | 69.7479 |
| 0.0008        | 250.0    | 3000 | 1.8225          | 70.3704   | 69.7479 |
| 0.0008        | 291.6667 | 3500 | 1.8417          | 40.7407   | 39.9160 |
| 0.0008        | 333.3333 | 4000 | 1.8590          | 40.3292   | 39.4958 |
| 0.0008        | 375.0    | 4500 | 1.8773          | 40.9465   | 40.1261 |
| 0.0008        | 416.6667 | 5000 | 1.8944          | 40.9465   | 39.9160 |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.5.1+cu121
- Datasets 3.3.2
- Tokenizers 0.20.3