File size: 15,931 Bytes
0f24858
 
 
 
 
 
31bf773
0f24858
31bf773
0f24858
 
 
 
 
 
 
 
 
 
 
 
 
 
31bf773
0f24858
 
 
 
 
 
 
31bf773
0f24858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31bf773
0f24858
 
 
 
31bf773
0f24858
 
 
31bf773
 
 
 
0f24858
 
 
 
 
 
 
31bf773
0f24858
31bf773
0f24858
 
 
 
 
 
 
 
31bf773
0f24858
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7c0d571750>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7f7c0d56a4c0>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "observation_space": {
        ":type:": "<class 'gym.spaces.dict.Dict'>",
        ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
        "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_np_random": null
    },
    "n_envs": 4,
    "num_timesteps": 1000000,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1679565507400840148,
    "learning_rate": 0.0007,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL29wdC9jb25kYS9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkHzoPuPuDr0Tyxc/kHzoPuPuDr0Tyxc/kHzoPuPuDr0Tyxc/kHzoPuPuDr0Tyxc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALkUxv+mcSr92scc/Tk1JP8mSyT+bUhy+OujKP3Avbz+FXb2+OmXBPuwUQ79t3dK+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACQfOg+4+4OvRPLFz8JVE88QNa6u9ZdhTyQfOg+4+4OvRPLFz8JVE88QNa6u9ZdhTyQfOg+4+4OvRPLFz8JVE88QNa6u9ZdhTyQfOg+4+4OvRPLFz8JVE88QNa6u9ZdhTyUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 0.45407534 -0.03489579  0.5929424 ]\n [ 0.45407534 -0.03489579  0.5929424 ]\n [ 0.45407534 -0.03489579  0.5929424 ]\n [ 0.45407534 -0.03489579  0.5929424 ]]",
        "desired_goal": "[[-0.69246185 -0.79145676  1.5601032 ]\n [ 0.7863358   1.574792   -0.15265886]\n [ 1.585212    0.9343176  -0.36985412]\n [ 0.37772542 -0.762038   -0.4118456 ]]",
        "observation": "[[ 0.45407534 -0.03489579  0.5929424   0.01265431 -0.00570181  0.0162801 ]\n [ 0.45407534 -0.03489579  0.5929424   0.01265431 -0.00570181  0.0162801 ]\n [ 0.45407534 -0.03489579  0.5929424   0.01265431 -0.00570181  0.0162801 ]\n [ 0.45407534 -0.03489579  0.5929424   0.01265431 -0.00570181  0.0162801 ]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI9ERPiPG1L0KEgk+EoxmPUVqE73OnMk8mF62PGT4+71Ns2U+SjK+PcjVFr3aulo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]",
        "desired_goal": "[[ 0.14239936 -0.10389354  0.13385788]\n [ 0.05628593 -0.03599002  0.0246109 ]\n [ 0.0222619  -0.12303236  0.22431679]\n [ 0.09286936 -0.03682497  0.2136034 ]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVcA9z58GGcCUhpRSlIwBbJRLMowBdJRHQKGhR3BYV7B1fZQoaAZoCWgPQwgBUMWNW4wNwJSGlFKUaBVLMmgWR0ChoRZ/9YOldX2UKGgGaAloD0MIN8e5TbhXHMCUhpRSlGgVSzJoFkdAoaDpy4nWrnV9lChoBmgJaA9DCFjk1w+xwRzAlIaUUpRoFUsyaBZHQKGgvAvcrRV1fZQoaAZoCWgPQwiASSpTzHEewJSGlFKUaBVLMmgWR0ChohJON5t4dX2UKGgGaAloD0MIW+m12VhZH8CUhpRSlGgVSzJoFkdAoaHhXhfjTHV9lChoBmgJaA9DCIHoSZnUACHAlIaUUpRoFUsyaBZHQKGhtIEr5Ip1fZQoaAZoCWgPQwikq3R3na0SwJSGlFKUaBVLMmgWR0ChoYbHyVfNdX2UKGgGaAloD0MITyLCvwgaGMCUhpRSlGgVSzJoFkdAoaLjASFoMHV9lChoBmgJaA9DCIgtPZrqGRXAlIaUUpRoFUsyaBZHQKGisgB91EF1fZQoaAZoCWgPQwgDz72HSw4MwJSGlFKUaBVLMmgWR0ChooUZeiSJdX2UKGgGaAloD0MIvt2SHLA7FsCUhpRSlGgVSzJoFkdAoaJXexfOU3V9lChoBmgJaA9DCF9DcFzG7RbAlIaUUpRoFUsyaBZHQKGjsl1KXfJ1fZQoaAZoCWgPQwg3xk54CV4fwJSGlFKUaBVLMmgWR0Cho4FqBVdYdX2UKGgGaAloD0MIu0c2V83DF8CUhpRSlGgVSzJoFkdAoaNUeQuEmXV9lChoBmgJaA9DCLTHC+nw8A/AlIaUUpRoFUsyaBZHQKGjJrIHTql1fZQoaAZoCWgPQwiVLCeh9MUNwJSGlFKUaBVLMmgWR0ChpHeRxLkCdX2UKGgGaAloD0MIbhYvFoYIFsCUhpRSlGgVSzJoFkdAoaRGpbUwz3V9lChoBmgJaA9DCDNUxVT6qRrAlIaUUpRoFUsyaBZHQKGkGbExZdR1fZQoaAZoCWgPQwgB9tGpKz8GwJSGlFKUaBVLMmgWR0Cho+v5YYBOdX2UKGgGaAloD0MIoz1eSIfnFcCUhpRSlGgVSzJoFkdAoaVqS5iEx3V9lChoBmgJaA9DCJPi4xOyQx3AlIaUUpRoFUsyaBZHQKGlOi9qUNd1fZQoaAZoCWgPQwj0aoDSUGMWwJSGlFKUaBVLMmgWR0ChpQ08V58jdX2UKGgGaAloD0MIfcwHBDrDHsCUhpRSlGgVSzJoFkdAoaTfpW3jMnV9lChoBmgJaA9DCBb3H5kOjRjAlIaUUpRoFUsyaBZHQKGmOvs7dSF1fZQoaAZoCWgPQwi6SnfX2dAVwJSGlFKUaBVLMmgWR0Chpgomois5dX2UKGgGaAloD0MISUikbfyZI8CUhpRSlGgVSzJoFkdAoaXdVrAP/nV9lChoBmgJaA9DCBpR2ht82SXAlIaUUpRoFUsyaBZHQKGlr51vETB1fZQoaAZoCWgPQwgZ/tMNFMgSwJSGlFKUaBVLMmgWR0ChpycOCoS+dX2UKGgGaAloD0MIbcfUXdkFGsCUhpRSlGgVSzJoFkdAoab2EytV73V9lChoBmgJaA9DCIMVp1oLyyHAlIaUUpRoFUsyaBZHQKGmyScLBsR1fZQoaAZoCWgPQwjdtYR80HsgwJSGlFKUaBVLMmgWR0ChppxAKOT8dX2UKGgGaAloD0MI02hyMQbmHcCUhpRSlGgVSzJoFkdAoafx2IO6NHV9lChoBmgJaA9DCMECmDJwmCTAlIaUUpRoFUsyaBZHQKGnwOfdykt1fZQoaAZoCWgPQwifrBiuDoAbwJSGlFKUaBVLMmgWR0Chp5P1DjR2dX2UKGgGaAloD0MISrclcsE5DMCUhpRSlGgVSzJoFkdAoadmOIZZS3V9lChoBmgJaA9DCFrXaDnQ8xjAlIaUUpRoFUsyaBZHQKGovvSc9W91fZQoaAZoCWgPQwh5IR0ewjgJwJSGlFKUaBVLMmgWR0ChqI3+l0o0dX2UKGgGaAloD0MI6KT3ja9dG8CUhpRSlGgVSzJoFkdAoahhEc81XXV9lChoBmgJaA9DCMaoa+19OiLAlIaUUpRoFUsyaBZHQKGoM1JDmbN1fZQoaAZoCWgPQwi05sdfWtQRwJSGlFKUaBVLMmgWR0ChqYnjyWiUdX2UKGgGaAloD0MI7pbkgF19FcCUhpRSlGgVSzJoFkdAoalY8ZDRdHV9lChoBmgJaA9DCH9PrFPlAyDAlIaUUpRoFUsyaBZHQKGpLAJswcp1fZQoaAZoCWgPQwik42pkV8odwJSGlFKUaBVLMmgWR0ChqP5FXq7idX2UKGgGaAloD0MIfnIUIAqGC8CUhpRSlGgVSzJoFkdAoapotz0Yj3V9lChoBmgJaA9DCI0qw7gb5CPAlIaUUpRoFUsyaBZHQKGqOBeXzDp1fZQoaAZoCWgPQwgv3/qw3iAjwJSGlFKUaBVLMmgWR0Chqgs1baAXdX2UKGgGaAloD0MI9gfKbfvmJ8CUhpRSlGgVSzJoFkdAoandgMMI/3V9lChoBmgJaA9DCOvE5XgF2iDAlIaUUpRoFUsyaBZHQKGrVcqOLix1fZQoaAZoCWgPQwjoacAg6SMUwJSGlFKUaBVLMmgWR0ChqyTVtoBadX2UKGgGaAloD0MI0hxZ+WWwGsCUhpRSlGgVSzJoFkdAoar4FTvRZ3V9lChoBmgJaA9DCAyyZfm6DBnAlIaUUpRoFUsyaBZHQKGqyt03fhx1fZQoaAZoCWgPQwj5hsJn6yAWwJSGlFKUaBVLMmgWR0ChrCFev6j4dX2UKGgGaAloD0MIO4kI/yJIGMCUhpRSlGgVSzJoFkdAoavwbbUPQXV9lChoBmgJaA9DCEiLM4Y5cRTAlIaUUpRoFUsyaBZHQKGrw4MnZ011fZQoaAZoCWgPQwhXzAhvD4ogwJSGlFKUaBVLMmgWR0Chq5XFDOTrdX2UKGgGaAloD0MIHJlH/mAYJ8CUhpRSlGgVSzJoFkdAoa0RjQRf4XV9lChoBmgJaA9DCOKUuflGdAzAlIaUUpRoFUsyaBZHQKGs4Zpi7TV1fZQoaAZoCWgPQwjl1TkGZJcqwJSGlFKUaBVLMmgWR0ChrLSy2QXAdX2UKGgGaAloD0MI097gC5MxIcCUhpRSlGgVSzJoFkdAoayG938n/nV9lChoBmgJaA9DCGkCRSxiQCLAlIaUUpRoFUsyaBZHQKGt3ExZdOZ1fZQoaAZoCWgPQwgIkKFjB7UcwJSGlFKUaBVLMmgWR0ChratYSxqxdX2UKGgGaAloD0MIlPjcCfa/EcCUhpRSlGgVSzJoFkdAoa1+Z7Xxv3V9lChoBmgJaA9DCOG1SxsOSw/AlIaUUpRoFUsyaBZHQKGtUKmbb111fZQoaAZoCWgPQwgCDqFKzZ4SwJSGlFKUaBVLMmgWR0ChrswCCBf8dX2UKGgGaAloD0MISmBzDp75EMCUhpRSlGgVSzJoFkdAoa6bCHh0hnV9lChoBmgJaA9DCPJetTLhlw3AlIaUUpRoFUsyaBZHQKGubhrnDBN1fZQoaAZoCWgPQwi+F1+0x4sWwJSGlFKUaBVLMmgWR0ChrkBRIjGDdX2UKGgGaAloD0MIOxixTwA1F8CUhpRSlGgVSzJoFkdAoa+bpcHGCXV9lChoBmgJaA9DCAWKWMSwsyHAlIaUUpRoFUsyaBZHQKGvarK/2011fZQoaAZoCWgPQwicw7Xaw4YgwJSGlFKUaBVLMmgWR0Chrz3NTtLMdX2UKGgGaAloD0MItqLNcW6jJsCUhpRSlGgVSzJoFkdAoa8QHkcS5HV9lChoBmgJaA9DCOolxjL90irAlIaUUpRoFUsyaBZHQKGwlL3bmEJ1fZQoaAZoCWgPQwilhjYAG+ghwJSGlFKUaBVLMmgWR0ChsGPStvGZdX2UKGgGaAloD0MIY35uaMrOKsCUhpRSlGgVSzJoFkdAobA2+0w8GXV9lChoBmgJaA9DCBH/sKVHQxPAlIaUUpRoFUsyaBZHQKGwCbedkJ91fZQoaAZoCWgPQwj5o6gz94ggwJSGlFKUaBVLMmgWR0ChsYU52hZhdX2UKGgGaAloD0MIwCDp0yqKF8CUhpRSlGgVSzJoFkdAobFURaouPHV9lChoBmgJaA9DCEIlrmNcIRXAlIaUUpRoFUsyaBZHQKGxJ9Vmz0J1fZQoaAZoCWgPQwgT1zGuuBggwJSGlFKUaBVLMmgWR0ChsPr5ylvZdX2UKGgGaAloD0MIkKFjB5VoFcCUhpRSlGgVSzJoFkdAobKbcmBvrHV9lChoBmgJaA9DCCtR9pZyJiHAlIaUUpRoFUsyaBZHQKGya0Y0l7d1fZQoaAZoCWgPQwjwp8ZLN1kTwJSGlFKUaBVLMmgWR0Chsj8brC3xdX2UKGgGaAloD0MI275H/fU6FMCUhpRSlGgVSzJoFkdAobIRaX8fm3V9lChoBmgJaA9DCF7WxAJfwRrAlIaUUpRoFUsyaBZHQKGzZy3CsOp1fZQoaAZoCWgPQwiVYkfjUC8awJSGlFKUaBVLMmgWR0ChszY1gpjMdX2UKGgGaAloD0MIC7Q7pBh4J8CUhpRSlGgVSzJoFkdAobMJRGc4HXV9lChoBmgJaA9DCFZ+GYwRuSLAlIaUUpRoFUsyaBZHQKGy24sEq2B1fZQoaAZoCWgPQwjS4La28EwWwJSGlFKUaBVLMmgWR0ChtD9ZJTVEdX2UKGgGaAloD0MIu9Bcp5EGF8CUhpRSlGgVSzJoFkdAobQPBtUGV3V9lChoBmgJaA9DCKzFpwAYjxzAlIaUUpRoFUsyaBZHQKGz4iwjdHl1fZQoaAZoCWgPQwjwiArVzYUcwJSGlFKUaBVLMmgWR0Chs7RlQMx5dX2UKGgGaAloD0MIysLX17pEJMCUhpRSlGgVSzJoFkdAobUxTS9dvHV9lChoBmgJaA9DCMy209aI4B3AlIaUUpRoFUsyaBZHQKG1AFY+0PZ1fZQoaAZoCWgPQwgAxF29iqwbwJSGlFKUaBVLMmgWR0ChtNOm78NydX2UKGgGaAloD0MIZFkw8UfxC8CUhpRSlGgVSzJoFkdAobSmz8gp0HV9lChoBmgJaA9DCM6qz9VWDBTAlIaUUpRoFUsyaBZHQKG1++Y+jdp1fZQoaAZoCWgPQwiUiPAvgh4iwJSGlFKUaBVLMmgWR0Chtcr/sE7odX2UKGgGaAloD0MIqmQAqOLOI8CUhpRSlGgVSzJoFkdAobWeNedCmnV9lChoBmgJaA9DCA6IEFfOzhbAlIaUUpRoFUsyaBZHQKG1cHzH0bt1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 50000,
    "n_steps": 5,
    "gamma": 0.99,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "normalize_advantage": false
}