File size: 2,180 Bytes
0f994dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
model-index:
- name: T5_mrqa_b32_9ep
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/favcowboy/huggingface/runs/o8ds7pmo)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/favcowboy/huggingface/runs/o8ds7pmo)
# T5_mrqa_b32_9ep
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7267
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 300 | 0.7897 |
| 0.9438 | 2.0 | 600 | 0.7702 |
| 0.9438 | 3.0 | 900 | 0.7400 |
| 0.9153 | 4.0 | 1200 | 0.7380 |
| 0.8721 | 5.0 | 1500 | 0.7316 |
| 0.8721 | 6.0 | 1800 | 0.7277 |
| 0.8536 | 7.0 | 2100 | 0.7277 |
| 0.8536 | 8.0 | 2400 | 0.7275 |
| 0.8291 | 9.0 | 2700 | 0.7267 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|