File size: 22,874 Bytes
151cba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7960
- loss:CoSENTLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: And your phone. Okay do you already have a phone in mind, what
    you wanted to upgrade to.
  sentences:
  - I'm now going to read out some terms and conditions to complete the order.
  - The same discounts you can have been added as an additional line and do into your
    account. It needs be entitled to % discount off of the costs.
  - Thank you and could you please confirm to me what is your full name.
- source_sentence: 'So glad you''re on the right plan. I will also check your average
    monthly usage for the past few months. Your usage is only ## gig of mobile data
    and then the highest one, it''s around ##. Gig of mobile details. So definitely
    the ## gig of mobile data will if broken.'
  sentences:
  - Thank you for calling over to my name is how can I help you.
  - So the phone that you currently have is that currently a Samsung?
  - So on that's something that you can they get that the shop and it's at a renewal
    for our insurance. So just in case like once you get back to the UK and you don't
    want to have the insurance anymore. You can possibly remove that. That and the
    full garbage insurance.
- source_sentence: Okay, well, I just want to share with you that I'm happy to advise
    that you have an amazing offer on our secondary ninth. So there any family members
    like to join or to under your name with a same billing address so they will be
    getting a 20% desk.
  sentences:
  - Yes, that's correct for know. Our price is £ and then it won't go down to £ after
    you apply the discount.
  - Thank you for calling over to my name is how can I help you.
  - Checking your account I can see you are on the and you have been paying £ per
    month. Is that correct?
- source_sentence: 'I just read to process this I just like to open your account here
    to see if we can get this eligible for your upgrade for the new iPhone ## so here.'
  sentences:
  - I now need to read some insurance disclosures related to the Ultimate Plan you
    have chosen.
  - Thank you and could you please confirm to me what is your full name.
  - I can provide to you . Are you happy to go ahead with this?
- source_sentence: Okay, and can you provide me your full name please.
  sentences:
  - So on that's something that you can they get that the shop and it's at a renewal
    for our insurance. So just in case like once you get back to the UK and you don't
    want to have the insurance anymore. You can possibly remove that. That and the
    full garbage insurance.
  - You. Okay, so for this one, how do you how do you normally use your mobile data.
  - You. Okay, so for this one, how do you how do you normally use your mobile data.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts_dev
    metrics:
    - type: pearson_cosine
      value: 0.5177189921265649
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.2603983787734805
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.5608459921843345
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.2595766499932607
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.5641188480826617
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.26039837957858836
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5177189925954635
      name: Pearson Dot
    - type: spearman_dot
      value: 0.26040366240168195
      name: Spearman Dot
    - type: pearson_max
      value: 0.5641188480826617
      name: Pearson Max
    - type: spearman_max
      value: 0.26040366240168195
      name: Spearman Max
    - type: pearson_cosine
      value: 0.4585915541798693
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.24734582807664446
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.5059296028724503
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.2466879170820096
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.506069567328991
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.24734582912817787
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.4585915495841867
      name: Pearson Dot
    - type: spearman_dot
      value: 0.24734582759867477
      name: Spearman Dot
    - type: pearson_max
      value: 0.506069567328991
      name: Pearson Max
    - type: spearman_max
      value: 0.24734582912817787
      name: Spearman Max
---

# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("enochlev/xlm-similarity")
# Run inference
sentences = [
    'Okay, and can you provide me your full name please.',
    'You. Okay, so for this one, how do you how do you normally use your mobile data.',
    'You. Okay, so for this one, how do you how do you normally use your mobile data.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts_dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.5177     |
| spearman_cosine    | 0.2604     |
| pearson_manhattan  | 0.5608     |
| spearman_manhattan | 0.2596     |
| pearson_euclidean  | 0.5641     |
| spearman_euclidean | 0.2604     |
| pearson_dot        | 0.5177     |
| spearman_dot       | 0.2604     |
| pearson_max        | 0.5641     |
| **spearman_max**   | **0.2604** |

#### Semantic Similarity
* Dataset: `sts_dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.4586     |
| spearman_cosine    | 0.2473     |
| pearson_manhattan  | 0.5059     |
| spearman_manhattan | 0.2467     |
| pearson_euclidean  | 0.5061     |
| spearman_euclidean | 0.2473     |
| pearson_dot        | 0.4586     |
| spearman_dot       | 0.2473     |
| pearson_max        | 0.5061     |
| **spearman_max**   | **0.2473** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 7,960 training samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text1                                                                            | text2                                                                              | label                                                          |
  |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                             | float                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 21.6 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 28.35 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 0.2</li><li>mean: 0.22</li><li>max: 1.0</li></ul> |
* Samples:
  | text1                                                                      | text2                                                                                                                                                                                                                                                                                                   | label            |
  |:---------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>Hello, welcome to O2. My name is __ How can I help you today?</code> | <code>Thank you for calling over to my name is how can I help you.</code>                                                                                                                                                                                                                               | <code>1.0</code> |
  | <code>Hello, welcome to O2. My name is __ How can I help you today?</code> | <code>So, I'd look into our accessory so for the airbags the one that we have an ongoing promotion right now for the accessories is the airport second generation. So you can. And either by there's like a great if you want to or I can also make it as an instalment for you. If you want to.</code> | <code>0.2</code> |
  | <code>Hello, welcome to O2. My name is __ How can I help you today?</code> | <code>So on that's something that you can they get that the shop and it's at a renewal for our insurance. So just in case like once you get back to the UK and you don't want to have the insurance anymore. You can possibly remove that. That and the full garbage insurance.</code>                  | <code>0.2</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 1,980 evaluation samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | text1                                                                              | text2                                                                              | label                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                          |
  | details | <ul><li>min: 7 tokens</li><li>mean: 39.04 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 28.35 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 0.2</li><li>mean: 0.22</li><li>max: 1.0</li></ul> |
* Samples:
  | text1                                                                                                                                                                                                                                                   | text2                                                                                                                                                                                                                                                                                                   | label            |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>Right perfect. Thank you for passenger security cyber. Now let me go ahead. Then I look for your option to do an upgrade. So you had mentioned that you're wanting to get an upgrade. Can you tell me is it for a devise or a single plan.</code> | <code>Are you planning to get a new sim only plan or a new phone?</code>                                                                                                                                                                                                                                | <code>1.0</code> |
  | <code>Right perfect. Thank you for passenger security cyber. Now let me go ahead. Then I look for your option to do an upgrade. So you had mentioned that you're wanting to get an upgrade. Can you tell me is it for a devise or a single plan.</code> | <code>So, I'd look into our accessory so for the airbags the one that we have an ongoing promotion right now for the accessories is the airport second generation. So you can. And either by there's like a great if you want to or I can also make it as an instalment for you. If you want to.</code> | <code>0.2</code> |
  | <code>Right perfect. Thank you for passenger security cyber. Now let me go ahead. Then I look for your option to do an upgrade. So you had mentioned that you're wanting to get an upgrade. Can you tell me is it for a devise or a single plan.</code> | <code>So on that's something that you can they get that the shop and it's at a renewal for our insurance. So just in case like once you get back to the UK and you don't want to have the insurance anymore. You can possibly remove that. That and the full garbage insurance.</code>                  | <code>0.2</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | Validation Loss | sts_dev_spearman_max |
|:-----:|:----:|:---------------:|:--------------------:|
| 4.0   | 128  | 0.4041          | 0.2604               |
| 1.0   | 32   | 0.6357          | 0.2473               |


### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.2.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->