emmuzoo commited on
Commit
a394d63
·
1 Parent(s): 575d0a6

Config env=32,

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -227.80 +/- 21.05
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 270.26 +/- 24.01
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23066c1d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23066c1dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23066c1e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23066c1ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f23066c1f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f23066c3040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23066c30d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23066c3160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23066c31f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23066c3280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23066c3310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23066c33a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f23066c4440>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679264278035731938, "learning_rate": 1e-05, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+5Pi1iONo8YWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNkUz62cT0/tioGPnBCyb6d9iY+A8WYvQAAAAAAAAAAo5wCP8lbET2Tq3G8xGnyuT6TFD3jMHc3AAAAAAAAgD8Aesk89vgbOYYfnbsVIAK8k2lAOtq9B7wAAAAAAAAAABr8Ib3DTwk7FdxbO67xzDs1K3g89gKyOwAAAAAAAAAAACqgPRSuibYQnc87LZ5NONlLOrsNHpU1AACAPwAAgD8Qbws/k0IUP1tIpzyQBty+jUrmPir7ND0AAAAAAAAAAOaxB764kcC72F1EvSNvtrvjxgs9lSqaPAAAgD8AAIA/9lylPtvkgry7RPW40jxZNy34p71JWxw3AACAPwAAgD/zNuW9rtuVug9BzD45nsC9iYgMvCO4xT4AAIA/AAAAALPUdj6aELE/7uTuPpb9V74WYTA+vctvPgAAAAAAAAAA/X/YPs6syLzmC5Q6ZIPgN06UDj5ELMm4AACAPwAAgD9NYTM9jAiyP6XzNT8f8jO+iFIbvX7+l70AAAAAAAAAAJrDhbymZLs/3OQfvq3CFD5kyIs6Q0KOvQAAAAAAAAAAWmqdvSe9MT+FHTK+U9mwvmnOKr0WrEI8AAAAAAAAAACAFqq9RvCVP+4oxL4yKP2+v7mqu5ctK7wAAAAAAAAAAAbRVL5jRxQ9SXKJPnUVmb7huMe929H2PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr1sExvqGF8CUhpRSlIwBbJRNEgGMAXSUR0Ce4TCCBf8edX2UKGgGaAloD0MIGR2QhH0rIUCUhpRSlGgVS5toFkdAnuXA1R+BpnV9lChoBmgJaA9DCBkBFY4gRRnAlIaUUpRoFUvWaBZHQJ7mt0tAcDN1fZQoaAZoCWgPQwjRBfUtczIlwJSGlFKUaBVLnmgWR0Ce6lXY150KdX2UKGgGaAloD0MIg2qDE9GvDcCUhpRSlGgVTQwBaBZHQJ79qeRPoFF1fZQoaAZoCWgPQwjT9UTXhccjwJSGlFKUaBVNTgFoFkdAnv4aLCN0eXV9lChoBmgJaA9DCDwRxHk4aTpAlIaUUpRoFU0JAWgWR0Ce/vsBhhH9dX2UKGgGaAloD0MImxw+6URqT0CUhpRSlGgVTegDaBZHQJ7/oZgogFJ1fZQoaAZoCWgPQwj+SBEZVnk1QJSGlFKUaBVLxGgWR0CfA1FlkH2RdX2UKGgGaAloD0MI91s7URKKMMCUhpRSlGgVS6doFkdAnwfd5UtI1HV9lChoBmgJaA9DCCYA/5Qq/TRAlIaUUpRoFUu0aBZHQJ8IQrVe8f51fZQoaAZoCWgPQwg6I0p7g5hQQJSGlFKUaBVN6ANoFkdAnwnZuMuOCHV9lChoBmgJaA9DCKJD4Eig90TAlIaUUpRoFUvpaBZHQJ8KyN1hb4d1fZQoaAZoCWgPQwhUVP1K579dQJSGlFKUaBVN6ANoFkdAnw20ZvUBn3V9lChoBmgJaA9DCOUK73IRDxHAlIaUUpRoFU0NAWgWR0CfD+wIt16mdX2UKGgGaAloD0MIx0YgXtcXKcCUhpRSlGgVS79oFkdAnxYaBd2Pk3V9lChoBmgJaA9DCMSZX80BAvI/lIaUUpRoFU3oA2gWR0CfGMdFvybydX2UKGgGaAloD0MIJoxmZfukSsCUhpRSlGgVS9FoFkdAnxpBxo7FKnV9lChoBmgJaA9DCPVLxFvnh0BAlIaUUpRoFU3oA2gWR0CfIMu/UONHdX2UKGgGaAloD0MI1SMNbms3RcCUhpRSlGgVTQABaBZHQJ8mukVN5+p1fZQoaAZoCWgPQwhHVKhuLipIwJSGlFKUaBVL4mgWR0CfKdk6Lfk4dX2UKGgGaAloD0MI4gD6ff+UUECUhpRSlGgVTegDaBZHQJ8t+s6q8151fZQoaAZoCWgPQwj4UKIljw1QQJSGlFKUaBVN6ANoFkdAny5PWxyGSXV9lChoBmgJaA9DCDIAVHHjfiBAlIaUUpRoFU3oA2gWR0CfL2lPacqfdX2UKGgGaAloD0MI1EhL5e2iVUCUhpRSlGgVTegDaBZHQJ8vyAEt/Wl1fZQoaAZoCWgPQwix9+KL9lxfwJSGlFKUaBVNngJoFkdAnzD19v0h/3V9lChoBmgJaA9DCE64V+atMlrAlIaUUpRoFU1CAWgWR0CfMZ7voePrdX2UKGgGaAloD0MI9yAE5Eu0OUCUhpRSlGgVS+NoFkdAnzS4sI3R5XV9lChoBmgJaA9DCKnAyTZwxz7AlIaUUpRoFU3oA2gWR0CfNwxVQyh0dX2UKGgGaAloD0MIflUuVP6VO0CUhpRSlGgVS6toFkdAnzfC2QXAM3V9lChoBmgJaA9DCCGTjJyFjSDAlIaUUpRoFUvRaBZHQJ85pPO6d2B1fZQoaAZoCWgPQwgvih74GKzKv5SGlFKUaBVLv2gWR0CfOfMWXTmXdX2UKGgGaAloD0MIqU2c3O96Q0CUhpRSlGgVTegDaBZHQJ89mE12q1h1fZQoaAZoCWgPQwguOIO/X8wwQJSGlFKUaBVLvGgWR0CfWLBrN4Z/dX2UKGgGaAloD0MIybCKNzLBQcCUhpRSlGgVS7xoFkdAn1yes5n14HV9lChoBmgJaA9DCAkZyLPL5zHAlIaUUpRoFUvwaBZHQJ9cuvPkaMt1fZQoaAZoCWgPQwiJQWDl0CI8QJSGlFKUaBVLw2gWR0CfXM8HObAldX2UKGgGaAloD0MIHGFREae7IECUhpRSlGgVS69oFkdAn2FcKTjebnV9lChoBmgJaA9DCE65wrtcvElAlIaUUpRoFU3oA2gWR0CfYZxlxwQ2dX2UKGgGaAloD0MINSpwsg2VV0CUhpRSlGgVTegDaBZHQJ9olyhi9Zl1fZQoaAZoCWgPQwhJEK6AQvUowJSGlFKUaBVLkWgWR0CfacpZOi35dX2UKGgGaAloD0MIjh8qjZgCUUCUhpRSlGgVTegDaBZHQJ9rUyRB/qh1fZQoaAZoCWgPQwjj3vyGifdcQJSGlFKUaBVN6ANoFkdAn24pLmITG3V9lChoBmgJaA9DCOi9MQQA3UzAlIaUUpRoFUvUaBZHQJ9uZqL0jC51fZQoaAZoCWgPQwgydy0hn5hswJSGlFKUaBVL1WgWR0CfcSMPz4DcdX2UKGgGaAloD0MIPBQF+kSe7b+UhpRSlGgVS9RoFkdAn3E0/nnuA3V9lChoBmgJaA9DCE8F3PP8yQpAlIaUUpRoFUvhaBZHQJ93GWGATZh1fZQoaAZoCWgPQwhxdQDEXZdLQJSGlFKUaBVN6ANoFkdAn3ebeANG3HV9lChoBmgJaA9DCDgVqTC2wVJAlIaUUpRoFU3oA2gWR0CffDrMkhRqdX2UKGgGaAloD0MIyLWhYpysVcCUhpRSlGgVS/doFkdAn34c6q8143V9lChoBmgJaA9DCMf17/rMuT1AlIaUUpRoFUv5aBZHQJ+BmqzZ6D51fZQoaAZoCWgPQwh9BWnGohNYQJSGlFKUaBVN6ANoFkdAn4OzE3sHB3V9lChoBmgJaA9DCEIJM23/Sh5AlIaUUpRoFUvAaBZHQJ+EFK3/gix1fZQoaAZoCWgPQwh6jzNN2J4TQJSGlFKUaBVLkWgWR0Cfh6XaJyhjdX2UKGgGaAloD0MI424QrRXdU0CUhpRSlGgVTegDaBZHQJ+JXfLs8gZ1fZQoaAZoCWgPQwjmB67yBJ43wJSGlFKUaBVL2GgWR0CfimATZg5SdX2UKGgGaAloD0MIWG/UCtOrRECUhpRSlGgVTegDaBZHQJ+Kyg6EJ0J1fZQoaAZoCWgPQwiXdJSD2ehKQJSGlFKUaBVN6ANoFkdAn4uGLYPGyXV9lChoBmgJaA9DCDMa+bzi30RAlIaUUpRoFUulaBZHQJ+NpBAv+Ox1fZQoaAZoCWgPQwj4/ZsXJ+lgQJSGlFKUaBVN6ANoFkdAn48G7J4jbHV9lChoBmgJaA9DCBH+RdCYLTXAlIaUUpRoFUuzaBZHQJ+PK0OVgQZ1fZQoaAZoCWgPQwialIJuLz1AwJSGlFKUaBVLrmgWR0Cfkvkdmxt6dX2UKGgGaAloD0MIVUs6ysFcMsCUhpRSlGgVS5hoFkdAn5SP9Hc1wnV9lChoBmgJaA9DCGfttgvNjT9AlIaUUpRoFUu9aBZHQJ+ZFIy0rsl1fZQoaAZoCWgPQwgFiIIZU6A+wJSGlFKUaBVL82gWR0CfnLedCmdidX2UKGgGaAloD0MIFk1nJ4PjC0CUhpRSlGgVS9JoFkdAn55yVfNRnHV9lChoBmgJaA9DCG+gwDv51ANAlIaUUpRoFU3oA2gWR0Cfo2zkIX0odX2UKGgGaAloD0MIvALRkzLLScCUhpRSlGgVS71oFkdAn6O0JfICEHV9lChoBmgJaA9DCOwS1VsDn0JAlIaUUpRoFUvzaBZHQJ+j0Pwuuih1fZQoaAZoCWgPQwjyBwPPvWcgwJSGlFKUaBVNCgFoFkdAn7jfNu+AVnV9lChoBmgJaA9DCDtzDwnfJUdAlIaUUpRoFUvJaBZHQJ+5bA8B+4N1fZQoaAZoCWgPQwhIqYQn9DhQQJSGlFKUaBVN6ANoFkdAn7mg1R+BpnV9lChoBmgJaA9DCCf20D5WPEVAlIaUUpRoFUulaBZHQJ+8cfcN6Pd1fZQoaAZoCWgPQwjc9j3qr4NEQJSGlFKUaBVN6ANoFkdAn8E20eEIxHV9lChoBmgJaA9DCEEqxY7GoldAlIaUUpRoFU3oA2gWR0Cfwm/IbOu8dX2UKGgGaAloD0MIqoJRSZ0ILUCUhpRSlGgVS9poFkdAn8NFW4mTknV9lChoBmgJaA9DCOVDUDV6elLAlIaUUpRoFUvpaBZHQJ/D5H8TBZZ1fZQoaAZoCWgPQwj3HcNjP49YQJSGlFKUaBVN6ANoFkdAn8TeARTS9nV9lChoBmgJaA9DCLiQR3AjZ1ZAlIaUUpRoFU3oA2gWR0Cfx0LB9Cu2dX2UKGgGaAloD0MIE9OFWP36X0CUhpRSlGgVTegDaBZHQJ/MoCFK02N1fZQoaAZoCWgPQwimYmNeR7JGQJSGlFKUaBVLtmgWR0CfzZ+L3sX0dX2UKGgGaAloD0MIXeDyWDPyAMCUhpRSlGgVS+toFkdAn83Rp5/smnV9lChoBmgJaA9DCK63zVSI81DAlIaUUpRoFUvdaBZHQJ/VvTTfBN51fZQoaAZoCWgPQwg5DycwnYBdQJSGlFKUaBVN6ANoFkdAn9hLXQMQVnV9lChoBmgJaA9DCKbUJeMY+STAlIaUUpRoFU0xAWgWR0Cf2VDZUT+OdX2UKGgGaAloD0MI4lrtYS9UAECUhpRSlGgVS6ZoFkdAn9vKJhvzfHV9lChoBmgJaA9DCEcFTraBkUvAlIaUUpRoFUvwaBZHQJ/jECLdepp1fZQoaAZoCWgPQwjJ5T+k3/BXQJSGlFKUaBVN6ANoFkdAn+Qw5aNdaHV9lChoBmgJaA9DCF2MgXUcG05AlIaUUpRoFUuRaBZHQJ/ml5AyEct1fZQoaAZoCWgPQwgudCUC1YZSwJSGlFKUaBVN1gFoFkdAn+acLF4s3HV9lChoBmgJaA9DCOZ1xCEbwDHAlIaUUpRoFU0oAWgWR0Cf5tcBU70WdX2UKGgGaAloD0MI5IOezaoWYMCUhpRSlGgVS+JoFkdAn+sNkJ8fFXV9lChoBmgJaA9DCGIQWDm0nEVAlIaUUpRoFUupaBZHQJ/zaKekHlh1fZQoaAZoCWgPQwhEUDV6NXxCQJSGlFKUaBVN6ANoFkdAn/WtcKPXCnV9lChoBmgJaA9DCKgbKPBOtkRAlIaUUpRoFU3oA2gWR0Cf+lQizLOidX2UKGgGaAloD0MIweWxZmTwIkCUhpRSlGgVTSYBaBZHQJ/7AcCHRCx1fZQoaAZoCWgPQwiKVu4FZpxRQJSGlFKUaBVN6ANoFkdAn/6ATufEoHV9lChoBmgJaA9DCKA4gH7fz0xAlIaUUpRoFU3oA2gWR0CgAAoxQBPsdX2UKGgGaAloD0MItVAyObWjVUCUhpRSlGgVTegDaBZHQKAAZYtg8bJ1fZQoaAZoCWgPQwjSNv5EZdpXQJSGlFKUaBVN6ANoFkdAoACHh86V+3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8a006bbdc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8a006bbe50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8a006bbee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8a006bbf70>", "_build": "<function ActorCriticPolicy._build at 0x7f8a006bd040>", "forward": "<function ActorCriticPolicy.forward at 0x7f8a006bd0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8a006bd160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8a006bd1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8a006bd280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8a006bd310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8a006bd3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8a006bd430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8a006be200>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679362280135409496, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANobkL0p7Dy6jpwdOJNsXDNqRWk7+hk2twAAgD8AAIA/M3ePPI+2U7rDaNO34D4Ts3BzUzs22vc2AACAPwAAgD/m5fm9oI6pP0P2zb4kfQG/R0WMvk0DZL4AAAAAAAAAAMAKij7Uw/0+IvhqvkLx9r441YQ+on9SvgAAAAAAAAAAIGFLvumrkD+p44++0SA4v0R1w77ytAm9AAAAAAAAAAAmRC0+RBTKPqIXQ75Z/BO/m0rSPYh8+L0AAAAAAAAAAADq/TyuAaO65KekOVELFjQ1jDe6EwC8uAAAAAAAAIA/5tcmPbZEDrwr1RK+1I9xPNiVYz0JE0u9AACAPwAAgD+a3BE9XCMuui0YZjMgusivvX/LuZhhwLMAAIA/AACAP82MYDuwa4Y/d8dJO2bdZr+qcGC9QPECPQAAAAAAAAAAYKNVPg03gD8CE4A+px83v+6YkD67e3g9AAAAAAAAAABN2mg9itWqP+Pofz4ymdu+aavmPXouLD4AAAAAAAAAANpzzD0p5mE+R5G4vhRVtb7apOK94k62vQAAAAAAAAAAM+ZPPf8yLz7eyvi9De27vv8MRz1XeKe9AAAAAAAAAABzTo09wwVlPYA5Nr6w95q+SS/gvMyVirwAAAAAAAAAAOaNA73KYbY/xM/FvkKXg7wXl/65awR9vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeHx712AxdECUhpRSlIwBbJRL0owBdJRHQKDwR+98JD51fZQoaAZoCWgPQwhhiQeUjZNyQJSGlFKUaBVL1GgWR0Cg8GA3Lmp3dX2UKGgGaAloD0MIW5avy7CKckCUhpRSlGgVS8ZoFkdAoPB5Yoy9EnV9lChoBmgJaA9DCNXPm4qU73JAlIaUUpRoFUvGaBZHQKDwiFi8Wbh1fZQoaAZoCWgPQwiAgLVqVzpxQJSGlFKUaBVLqWgWR0Cg8KQkX1rZdX2UKGgGaAloD0MISPje36DxcECUhpRSlGgVS9JoFkdAoPDUZLqUvHV9lChoBmgJaA9DCG+fVWYKX3FAlIaUUpRoFUvBaBZHQKDw8bDMvAZ1fZQoaAZoCWgPQwgxtDo5A8xzQJSGlFKUaBVLwWgWR0Cg8QBYeT3ZdX2UKGgGaAloD0MIxciSOVZgc0CUhpRSlGgVS65oFkdAoPEHUlRgqnV9lChoBmgJaA9DCNQpj24EzXJAlIaUUpRoFUvdaBZHQKDxE163RXx1fZQoaAZoCWgPQwgy/+ib9ERzQJSGlFKUaBVLu2gWR0Cg8RYwZflZdX2UKGgGaAloD0MI3lm77YIqc0CUhpRSlGgVS+hoFkdAoPEpqsU7CHV9lChoBmgJaA9DCAGh9fDlNHNAlIaUUpRoFUvgaBZHQKDxMBOHnEF1fZQoaAZoCWgPQwiXVG03wb5xQJSGlFKUaBVLv2gWR0Cg8bKg7HQydX2UKGgGaAloD0MIEk2giMWdckCUhpRSlGgVS8VoFkdAoPHJAQg9vHV9lChoBmgJaA9DCJ87wf7rLXFAlIaUUpRoFUvFaBZHQKDx19GZuyh1fZQoaAZoCWgPQwh97C5QEsVxQJSGlFKUaBVLzWgWR0ChJSc0+C9RdX2UKGgGaAloD0MITn6LTtZCc0CUhpRSlGgVS99oFkdAoSWgKUmlZXV9lChoBmgJaA9DCPziUpX2enFAlIaUUpRoFUvBaBZHQKElnw5NoJ11fZQoaAZoCWgPQwgsYthhTF5zQJSGlFKUaBVL02gWR0ChJZ/En9ehdX2UKGgGaAloD0MI/3dEhaqLcECUhpRSlGgVS7RoFkdAoSW5wGW2PXV9lChoBmgJaA9DCCf6fJQRRHFAlIaUUpRoFUupaBZHQKEl5SG8Emp1fZQoaAZoCWgPQwizJasiXD90QJSGlFKUaBVL52gWR0ChJgUr9VFQdX2UKGgGaAloD0MIpnud1BcNckCUhpRSlGgVS8VoFkdAoSYvmV7hN3V9lChoBmgJaA9DCLml1ZB4THJAlIaUUpRoFUvJaBZHQKEmcrHU+cJ1fZQoaAZoCWgPQwjRzJNrCkZxQJSGlFKUaBVLxmgWR0ChJo+Wv8qGdX2UKGgGaAloD0MIskgT74DHcECUhpRSlGgVS8toFkdAoSavXf642HV9lChoBmgJaA9DCED2evfH/HJAlIaUUpRoFUvYaBZHQKEmtBMzuWt1fZQoaAZoCWgPQwhHdTqQtSFyQJSGlFKUaBVLsGgWR0ChJz5K3/gjdX2UKGgGaAloD0MILdFZZlFacECUhpRSlGgVS7RoFkdAoSdpXjlxO3V9lChoBmgJaA9DCHeiJCSSr3JAlIaUUpRoFUvSaBZHQKEnq0FbFCN1fZQoaAZoCWgPQwhf04OCUphxQJSGlFKUaBVLi2gWR0ChKAcBltj1dX2UKGgGaAloD0MIyO4CJQUQckCUhpRSlGgVS8poFkdAoShVyWAwwnV9lChoBmgJaA9DCHibN05KenJAlIaUUpRoFUutaBZHQKEoaBkI5YJ1fZQoaAZoCWgPQwj6JeKt88JxQJSGlFKUaBVLkmgWR0ChKHMuvlltdX2UKGgGaAloD0MIW+7MBMNackCUhpRSlGgVS89oFkdAoSja3LFGX3V9lChoBmgJaA9DCCZUcHhBXHNAlIaUUpRoFUvSaBZHQKEo5RPXTVl1fZQoaAZoCWgPQwijQJ/I04FyQJSGlFKUaBVL2WgWR0ChKQEl/pdKdX2UKGgGaAloD0MIuYjvxCxBbkCUhpRSlGgVS7NoFkdAoSl+t0V8C3V9lChoBmgJaA9DCEg3wqKidXRAlIaUUpRoFUvEaBZHQKEph3W4EwF1fZQoaAZoCWgPQwinr+drlsdwQJSGlFKUaBVLwGgWR0ChKZPRzBAOdX2UKGgGaAloD0MIYroQqz/ocECUhpRSlGgVS7xoFkdAoSmo3rD633V9lChoBmgJaA9DCHpVZ7UAw3BAlIaUUpRoFUuTaBZHQKEqROmBOHp1fZQoaAZoCWgPQwhMbhRZa01yQJSGlFKUaBVLyGgWR0ChKk/IbOu8dX2UKGgGaAloD0MI5zqNtJTucUCUhpRSlGgVTSEBaBZHQKEqZHbypaR1fZQoaAZoCWgPQwiARunSvwRyQJSGlFKUaBVLxmgWR0ChKokgwGnodX2UKGgGaAloD0MI4/4j02EAc0CUhpRSlGgVTfIBaBZHQKEqqhHLA591fZQoaAZoCWgPQwi3JAfs6jJ0QJSGlFKUaBVL42gWR0ChKqwyRB/rdX2UKGgGaAloD0MIc0urIXFwcUCUhpRSlGgVS65oFkdAoSrEj3VTaXV9lChoBmgJaA9DCCcSTDVzGXRAlIaUUpRoFUu7aBZHQKEq1zMA3kx1fZQoaAZoCWgPQwj3yrxVV4VzQJSGlFKUaBVLuWgWR0ChKuLlNlAedX2UKGgGaAloD0MIZtr+lZXMTECUhpRSlGgVS1VoFkdAoSs26RQrMHV9lChoBmgJaA9DCIqtoGlJb3FAlIaUUpRoFUvBaBZHQKErOg5BC2N1fZQoaAZoCWgPQwi8B+i+3JNwQJSGlFKUaBVLpmgWR0ChK2O1v2oOdX2UKGgGaAloD0MIOq+xS1TPcUCUhpRSlGgVS9JoFkdAoSuC8vmHQHV9lChoBmgJaA9DCJfGL7xS8HJAlIaUUpRoFUvbaBZHQKEriOMl1KZ1fZQoaAZoCWgPQwhqF9NMN5BxQJSGlFKUaBVLzWgWR0ChK79kauOkdX2UKGgGaAloD0MI6bmFrkRQc0CUhpRSlGgVS81oFkdAoSvYeT3Zf3V9lChoBmgJaA9DCHbicrzCRHFAlIaUUpRoFUupaBZHQKEr956dDpl1fZQoaAZoCWgPQwi4j9yatIdwQJSGlFKUaBVNBAFoFkdAoSxTqfOD8XV9lChoBmgJaA9DCPhVuVD53nFAlIaUUpRoFUuwaBZHQKEsYqU/wAl1fZQoaAZoCWgPQwiPi2oRkeJwQJSGlFKUaBVL2WgWR0ChLGU0elsQdX2UKGgGaAloD0MIbvjddAtKcUCUhpRSlGgVS7hoFkdAoSx5l18stnV9lChoBmgJaA9DCPmFV5J8NnFAlIaUUpRoFUuzaBZHQKEshUOuq3p1fZQoaAZoCWgPQwiFeY8zzYpuQJSGlFKUaBVLs2gWR0ChLJkupS75dX2UKGgGaAloD0MIgEbp0r+BcUCUhpRSlGgVS8RoFkdAoSzOgUUO/nV9lChoBmgJaA9DCGZMwRonL3RAlIaUUpRoFUvpaBZHQKEs0IUrTYx1fZQoaAZoCWgPQwiHiQYp+BdyQJSGlFKUaBVLwGgWR0ChLQ8Gkep5dX2UKGgGaAloD0MIFJUNa6qLcUCUhpRSlGgVS7VoFkdAoS0YXuVopXV9lChoBmgJaA9DCAIR4spZ3nBAlIaUUpRoFUuraBZHQKEtGlyBCld1fZQoaAZoCWgPQwhTQUXV75FyQJSGlFKUaBVLmWgWR0ChLWEt/WlNdX2UKGgGaAloD0MIdF/ObNeHc0CUhpRSlGgVS+doFkdAoS1l1MdtEXV9lChoBmgJaA9DCOtWz0mvO3JAlIaUUpRoFUvPaBZHQKEtcO9WZJF1fZQoaAZoCWgPQwgZA+s4ftdxQJSGlFKUaBVL12gWR0ChLbksJ6Y3dX2UKGgGaAloD0MIrkoi++D+cUCUhpRSlGgVS9JoFkdAoS3F3fQ8fXV9lChoBmgJaA9DCNQnucNmmnFAlIaUUpRoFUubaBZHQKEt6YPXkHV1fZQoaAZoCWgPQwjE7juGR5hvQJSGlFKUaBVLpGgWR0ChLfI24uscdX2UKGgGaAloD0MICf63kl1Ic0CUhpRSlGgVS8doFkdAoS4weNkvsnV9lChoBmgJaA9DCAFO7+J9N29AlIaUUpRoFUumaBZHQKEuTEm6XjV1fZQoaAZoCWgPQwjdtBmn4VNyQJSGlFKUaBVL0WgWR0ChLkvz4DcNdX2UKGgGaAloD0MIHCeFeQ9Dc0CUhpRSlGgVS99oFkdAoS5cS/TLGXV9lChoBmgJaA9DCL76eOg7B3BAlIaUUpRoFUvGaBZHQKEuYwkgOjJ1fZQoaAZoCWgPQwitF0M5kWVyQJSGlFKUaBVLzGgWR0ChLqH4fwI/dX2UKGgGaAloD0MIGjbK+k0fckCUhpRSlGgVS5loFkdAoS7GFpPAPHV9lChoBmgJaA9DCACquHGLr3JAlIaUUpRoFUu4aBZHQKEuxSVGCqZ1fZQoaAZoCWgPQwiFfNCzGT5xQJSGlFKUaBVLv2gWR0ChLsq814xDdX2UKGgGaAloD0MImgtcHqs3c0CUhpRSlGgVS9FoFkdAoS75eJHiFXV9lChoBmgJaA9DCJYhjnVxcHFAlIaUUpRoFUu6aBZHQKEvENkOI691fZQoaAZoCWgPQwhB8WPMXSNzQJSGlFKUaBVL3WgWR0ChL2x/mT1TdX2UKGgGaAloD0MI7l2DvrSgckCUhpRSlGgVS9ZoFkdAoS+pFPSDy3V9lChoBmgJaA9DCLvvGB67yHBAlIaUUpRoFUuaaBZHQKEvrOafBep1fZQoaAZoCWgPQwjxgojUtE9xQJSGlFKUaBVLwWgWR0ChL7H/95yEdX2UKGgGaAloD0MISUxQw7dAcUCUhpRSlGgVS8JoFkdAoS/5aPjn3nV9lChoBmgJaA9DCIv8+iF2CnNAlIaUUpRoFUu6aBZHQKEwAnNxEOR1fZQoaAZoCWgPQwjbTfBNEylxQJSGlFKUaBVL+mgWR0ChMEB1s+FDdX2UKGgGaAloD0MIhXr6CHzpcUCUhpRSlGgVS8ZoFkdAoTA+hPCVKXV9lChoBmgJaA9DCJbOh2fJ0XFAlIaUUpRoFUvTaBZHQKEwWBHTZxt1fZQoaAZoCWgPQwjkTX6LDhBwQJSGlFKUaBVLtGgWR0ChMIAx8D0UdX2UKGgGaAloD0MIWmPQCSHRcECUhpRSlGgVS8toFkdAoTCRaNdZ73V9lChoBmgJaA9DCKaYg6BjjXFAlIaUUpRoFUvKaBZHQKEwsu+RHPN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1240, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:680a341bf089c6a9ec1b152e3964143c130e76dcd349e975802d388875275a92
3
- size 147445
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98b3c4d86d91ae4eac68973e6b5e6a435f411dc901dc260222fc005215e3033b
3
+ size 147303
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23066c1d30>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23066c1dc0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23066c1e50>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23066c1ee0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f23066c1f70>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f23066c3040>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23066c30d0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23066c3160>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f23066c31f0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23066c3280>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23066c3310>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23066c33a0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f23066c4440>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -43,12 +43,12 @@
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
- "num_timesteps": 2015232,
47
- "_total_timesteps": 2000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1679249749564293483,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,7 +57,7 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3mub2jNSw/dfhpPUQ56r414h++zcH5PQAAAAAAAAAAQK5APt//DT8qJy++If7Wvj5zpT2gvr69AAAAAAAAAABmSpq8XJcUumLyiDo+eAw19CS8u6B5obkAAIA/AACAP83fEr1SM8i7PT+uPHu0mjwVjxu931yCPQAAgD8AAIA/mn3CPdsKsD6bKP69dlS4vmVrrbyKpuK9AAAAAAAAAADN8K87bHOjPsEJoDwH4qy+vzs6PdQPm7wAAAAAAAAAAJoLGT43Xko/NrjxPWaq2L5Pm1M+Xg9KvAAAAAAAAAAApo2NPa5R77x8eKU9GTC3vReoKb4oF4e+AACAPwAAgD8g9EU+AWaFP1McpD4u/wG/PkOsPrHpKz4AAAAAAAAAAABe+LxtSlc+Bj1rPjKHiL77gjU+kFbWvQAAAAAAAAAA2sXsvaRzJT9uoPq8/03fvnQOJb6OlO49AAAAAAAAAACafkE9j/47uksfIrwTFD61RVBTO6v9qTQAAAAAAAAAAPofCb5D5fc+8QWFPpNfpr6rzYc9NocqPgAAAAAAAAAAzXkgPUrSsD9nQSM/FfiRvlXHubx/RcQ6AAAAAAAAAACadHk9v8kjPx5Xir0mmNG+fMtmPc7Sgr0AAAAAAAAAAHMzZ76u2Ec/5gs7PfmP6L6iToy+W2jIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -67,16 +67,16 @@
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
- "_current_progress_remaining": -0.007616000000000067,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZoaNsv7CckCUhpRSlIwBbJRL2owBdJRHQLLA6uivgWJ1fZQoaAZoCWgPQwg0L4fdt6dwQJSGlFKUaBVL92gWR0CywO3E/B3zdX2UKGgGaAloD0MISkT4FwFgckCUhpRSlGgVS9xoFkdAssDza/RE4XV9lChoBmgJaA9DCH2VfOzujHBAlIaUUpRoFUv8aBZHQLLA+jxkNF11fZQoaAZoCWgPQwjAWrVrwqhvQJSGlFKUaBVL32gWR0CywR+QhfShdX2UKGgGaAloD0MIx9eeWRJub0CUhpRSlGgVS+ZoFkdAssE1u0kWynV9lChoBmgJaA9DCOrqjsX2nnFAlIaUUpRoFUv4aBZHQLLBQuL74zt1fZQoaAZoCWgPQwhV+DO8WYRyQJSGlFKUaBVL/2gWR0CywVhsl9jPdX2UKGgGaAloD0MIXeDyWDM+cUCUhpRSlGgVS91oFkdAssFa07bL2nV9lChoBmgJaA9DCJQyqaHNIXBAlIaUUpRoFUvTaBZHQLLBXI8hcJN1fZQoaAZoCWgPQwjZ7Ej1XZZxQJSGlFKUaBVL3mgWR0CywWjJyQxOdX2UKGgGaAloD0MIBcJOsWoabkCUhpRSlGgVS+toFkdAssFvTPSlWXV9lChoBmgJaA9DCIguqG+Z13BAlIaUUpRoFUvQaBZHQLLBp3Lmp2l1fZQoaAZoCWgPQwgclgZ+VM5zQJSGlFKUaBVLy2gWR0CywcHoxHoYdX2UKGgGaAloD0MIwjOhSeK2ckCUhpRSlGgVS+NoFkdAssHGuzQeFXV9lChoBmgJaA9DCDp0et6NF3FAlIaUUpRoFUv4aBZHQLLBz6cy31B1fZQoaAZoCWgPQwhNhuP5DD5uQJSGlFKUaBVL3mgWR0CywhhZpztDdX2UKGgGaAloD0MIwtoYO+HUbUCUhpRSlGgVS+loFkdAssIuk0rK/3V9lChoBmgJaA9DCAeaz7lbH3BAlIaUUpRoFUvqaBZHQLLCNTNdJJ51fZQoaAZoCWgPQwgU0ETYMCRyQJSGlFKUaBVL/2gWR0Cywkd3jdYXdX2UKGgGaAloD0MIiUFg5ZCIcECUhpRSlGgVS8toFkdAssJG9+PRzHV9lChoBmgJaA9DCPW+8bWnEHJAlIaUUpRoFUv0aBZHQLLCacvM8ox1fZQoaAZoCWgPQwhF8L+VbJdwQJSGlFKUaBVLzWgWR0Cywm33Dej3dX2UKGgGaAloD0MIDFnd6vnZckCUhpRSlGgVS9VoFkdAssJ7c2zfJnV9lChoBmgJaA9DCKmFksmpSnJAlIaUUpRoFUveaBZHQLLCiYCyQgd1fZQoaAZoCWgPQwjB5hw8U6hwQJSGlFKUaBVNBwFoFkdAssKm5hBqsXV9lChoBmgJaA9DCIPBNXf04XJAlIaUUpRoFUvraBZHQLLCqxsEaEV1fZQoaAZoCWgPQwgqOLwgIt5xQJSGlFKUaBVL5mgWR0Cyww+s1baAdX2UKGgGaAloD0MI963WiUu0cUCUhpRSlGgVS/1oFkdAssMRKlHjInV9lChoBmgJaA9DCMzPDU3Zw25AlIaUUpRoFUvkaBZHQLLDF8Z1mrd1fZQoaAZoCWgPQwjGhm72B/txQJSGlFKUaBVNMgFoFkdAssMdYOlO5HV9lChoBmgJaA9DCFNCsKqem3BAlIaUUpRoFU0PAWgWR0Cyw0QVO9FndX2UKGgGaAloD0MI7BLVWwNRcECUhpRSlGgVS+RoFkdAsshErUb1iHV9lChoBmgJaA9DCGMraFoik3FAlIaUUpRoFUvkaBZHQLLIiLowEhd1fZQoaAZoCWgPQwj+fjFbMm1yQJSGlFKUaBVL/mgWR0CyyKCwjdHldX2UKGgGaAloD0MILJs5JLWscUCUhpRSlGgVS9doFkdAssjhDLKV6nV9lChoBmgJaA9DCMCSq1g8kHFAlIaUUpRoFU0IAWgWR0CyyOO6d1+zdX2UKGgGaAloD0MI7WRwlPyLcECUhpRSlGgVS+5oFkdAssjjrC3w1HV9lChoBmgJaA9DCKz9ne1RUHNAlIaUUpRoFUvkaBZHQLLI6Ls8gZF1fZQoaAZoCWgPQwhZwARunQdzQJSGlFKUaBVNJAFoFkdAsskDiGWUr3V9lChoBmgJaA9DCPkSKjg8gHFAlIaUUpRoFUvZaBZHQLLJDqptJnR1fZQoaAZoCWgPQwhXzt4ZbRdzQJSGlFKUaBVL5WgWR0CyySt/jKgadX2UKGgGaAloD0MIUYaqmMrWcECUhpRSlGgVTRgBaBZHQLLJOMTviLl1fZQoaAZoCWgPQwho6+Bgb2pwQJSGlFKUaBVL12gWR0CyyZ5fx+a0dX2UKGgGaAloD0MIXhJnRRQtc0CUhpRSlGgVS+FoFkdAssm7tMPBi3V9lChoBmgJaA9DCOCD1y6tAXNAlIaUUpRoFUvzaBZHQLLJ0OKwY+B1fZQoaAZoCWgPQwgogGJkyQVxQJSGlFKUaBVL9GgWR0CyydXOSntOdX2UKGgGaAloD0MIqU2c3G+8cUCUhpRSlGgVS9VoFkdAssnjyy2QXHV9lChoBmgJaA9DCM8Qjll2z3FAlIaUUpRoFUveaBZHQLLKH/Ho5gh1fZQoaAZoCWgPQwiqRq8GKCxyQJSGlFKUaBVL0GgWR0CyykPb9If9dX2UKGgGaAloD0MIUYNpGH64cUCUhpRSlGgVS+doFkdAssqMMAmzB3V9lChoBmgJaA9DCBDLZg7JPXNAlIaUUpRoFUvYaBZHQLLKrefqX4V1fZQoaAZoCWgPQwgq5iDoaHlxQJSGlFKUaBVL3GgWR0CyyrL127nQdX2UKGgGaAloD0MIIT1FDlEKcUCUhpRSlGgVS/poFkdAssr8SwnpjnV9lChoBmgJaA9DCCSdgZGXx3FAlIaUUpRoFUvlaBZHQLLK/wOe8PF1fZQoaAZoCWgPQwgWGLK6FUtyQJSGlFKUaBVL5GgWR0Cyyy9oWYWtdX2UKGgGaAloD0MIvmiPF9IvckCUhpRSlGgVTRIBaBZHQLLLMgOBlMB1fZQoaAZoCWgPQwhp/pjW5jhwQJSGlFKUaBVL8WgWR0Cyyz1ejVQRdX2UKGgGaAloD0MIrBqEuV09ckCUhpRSlGgVS/VoFkdAsswGchC+lHV9lChoBmgJaA9DCGFPO/y1YG9AlIaUUpRoFUvuaBZHQLLMEq94/u91fZQoaAZoCWgPQwifWKfKN89wQJSGlFKUaBVL22gWR0CyzECeyzHCdX2UKGgGaAloD0MIoyO5/AfqbkCUhpRSlGgVTQUBaBZHQLLMZw+t8u11fZQoaAZoCWgPQwiQozmysoNxQJSGlFKUaBVNIwFoFkdAssxnGtITXnV9lChoBmgJaA9DCGglrfjGaHRAlIaUUpRoFUvlaBZHQLLMi3azu4R1fZQoaAZoCWgPQwgNcEG27PhxQJSGlFKUaBVNMAFoFkdAsszDW3BpH3V9lChoBmgJaA9DCAdBR6uaO3BAlIaUUpRoFUvPaBZHQLLMyALy+Yd1fZQoaAZoCWgPQwiKdap8z7lyQJSGlFKUaBVL4GgWR0CyzM2Mn7YTdX2UKGgGaAloD0MI8icqG9YOcUCUhpRSlGgVS+FoFkdAsszmKpDNQnV9lChoBmgJaA9DCDCfrBguUm9AlIaUUpRoFUvaaBZHQLLNB+rU9ZB1fZQoaAZoCWgPQwh5rBkZ5I5zQJSGlFKUaBVL+GgWR0CyzTJCjUNKdX2UKGgGaAloD0MIBi/6CtLNcUCUhpRSlGgVS/xoFkdAss1ee2/i53V9lChoBmgJaA9DCBEBh1CleHBAlIaUUpRoFU0KAWgWR0CyzXPSlWOqdX2UKGgGaAloD0MIVI80uG08cECUhpRSlGgVTQcBaBZHQLLNeD+irT91fZQoaAZoCWgPQwjy64fY4AtzQJSGlFKUaBVL4mgWR0CyzbUL2HtXdX2UKGgGaAloD0MIvRk1X6XYcUCUhpRSlGgVS+RoFkdAss2/qPfbbnV9lChoBmgJaA9DCDquRnbl6HFAlIaUUpRoFUvJaBZHQLLNwwZflZJ1fZQoaAZoCWgPQwiTqYJRSatyQJSGlFKUaBVL4WgWR0Cyzemo3rD7dX2UKGgGaAloD0MIg8E1dzRRcUCUhpRSlGgVS8BoFkdAss3tyksSTXV9lChoBmgJaA9DCNcXCW05HXBAlIaUUpRoFUviaBZHQLLOBB1cMVl1fZQoaAZoCWgPQwiwAny3+UxvQJSGlFKUaBVL1GgWR0CyzhgTyrggdX2UKGgGaAloD0MIw5ygTY6LcUCUhpRSlGgVTQoBaBZHQLLOFzrNW2h1fZQoaAZoCWgPQwj/snvy8CJyQJSGlFKUaBVLyWgWR0Cyzh9WZJCjdX2UKGgGaAloD0MIMnTsoBK/ckCUhpRSlGgVS+toFkdAss40IRh+fHV9lChoBmgJaA9DCHzzGyZa5HBAlIaUUpRoFUvTaBZHQLLOUGmUGFB1fZQoaAZoCWgPQwgFFsCUAWZyQJSGlFKUaBVL/WgWR0Cyzr/egte2dX2UKGgGaAloD0MIQ/8EFyt7b0CUhpRSlGgVS+doFkdAss7IwztTk3V9lChoBmgJaA9DCAcI5uixUXJAlIaUUpRoFUveaBZHQLLOzyI55qx1fZQoaAZoCWgPQwh7hQX3AwJwQJSGlFKUaBVL8WgWR0CyzvQpjMFEdX2UKGgGaAloD0MIa9WuCelkcECUhpRSlGgVS+toFkdAss9B6C17Y3V9lChoBmgJaA9DCNnPYimSzXBAlIaUUpRoFUv2aBZHQLLPTUcn3L51fZQoaAZoCWgPQwhAo3Tp3x9yQJSGlFKUaBVL4mgWR0Cyz2T3M6ikdX2UKGgGaAloD0MISriQRzBjcUCUhpRSlGgVS+hoFkdAss9sCcPOIXV9lChoBmgJaA9DCOkMjLysq29AlIaUUpRoFUvmaBZHQLLPgpzLfUF1fZQoaAZoCWgPQwi4yagyDJlxQJSGlFKUaBVNFgFoFkdAss+RLoOhCnV9lChoBmgJaA9DCNNQo5Ckm3NAlIaUUpRoFUvfaBZHQLLPlg8bJfZ1fZQoaAZoCWgPQwiRRgVOtgJwQJSGlFKUaBVL72gWR0Cyz6TyauwHdX2UKGgGaAloD0MISWdg5CWhcUCUhpRSlGgVS/VoFkdAss+uvkili3V9lChoBmgJaA9DCJgwmpXt1nFAlIaUUpRoFUvTaBZHQLLPtpmmLtN1fZQoaAZoCWgPQwgmAP+UahxyQJSGlFKUaBVL82gWR0Cyz8aPOpsHdX2UKGgGaAloD0MIb/HwngNiUECUhpRSlGgVS71oFkdAss/6qfe1r3VlLg=="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
- "_n_updates": 492,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
@@ -84,7 +84,7 @@
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8a006bbdc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8a006bbe50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8a006bbee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8a006bbf70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8a006bd040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8a006bd0d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8a006bd160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8a006bd1f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8a006bd280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8a006bd310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8a006bd3a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8a006bd430>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f8a006be200>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1679362280135409496,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANobkL0p7Dy6jpwdOJNsXDNqRWk7+hk2twAAgD8AAIA/M3ePPI+2U7rDaNO34D4Ts3BzUzs22vc2AACAPwAAgD/m5fm9oI6pP0P2zb4kfQG/R0WMvk0DZL4AAAAAAAAAAMAKij7Uw/0+IvhqvkLx9r441YQ+on9SvgAAAAAAAAAAIGFLvumrkD+p44++0SA4v0R1w77ytAm9AAAAAAAAAAAmRC0+RBTKPqIXQ75Z/BO/m0rSPYh8+L0AAAAAAAAAAADq/TyuAaO65KekOVELFjQ1jDe6EwC8uAAAAAAAAIA/5tcmPbZEDrwr1RK+1I9xPNiVYz0JE0u9AACAPwAAgD+a3BE9XCMuui0YZjMgusivvX/LuZhhwLMAAIA/AACAP82MYDuwa4Y/d8dJO2bdZr+qcGC9QPECPQAAAAAAAAAAYKNVPg03gD8CE4A+px83v+6YkD67e3g9AAAAAAAAAABN2mg9itWqP+Pofz4ymdu+aavmPXouLD4AAAAAAAAAANpzzD0p5mE+R5G4vhRVtb7apOK94k62vQAAAAAAAAAAM+ZPPf8yLz7eyvi9De27vv8MRz1XeKe9AAAAAAAAAABzTo09wwVlPYA5Nr6w95q+SS/gvMyVirwAAAAAAAAAAOaNA73KYbY/xM/FvkKXg7wXl/65awR9vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeHx712AxdECUhpRSlIwBbJRL0owBdJRHQKDwR+98JD51fZQoaAZoCWgPQwhhiQeUjZNyQJSGlFKUaBVL1GgWR0Cg8GA3Lmp3dX2UKGgGaAloD0MIW5avy7CKckCUhpRSlGgVS8ZoFkdAoPB5Yoy9EnV9lChoBmgJaA9DCNXPm4qU73JAlIaUUpRoFUvGaBZHQKDwiFi8Wbh1fZQoaAZoCWgPQwiAgLVqVzpxQJSGlFKUaBVLqWgWR0Cg8KQkX1rZdX2UKGgGaAloD0MISPje36DxcECUhpRSlGgVS9JoFkdAoPDUZLqUvHV9lChoBmgJaA9DCG+fVWYKX3FAlIaUUpRoFUvBaBZHQKDw8bDMvAZ1fZQoaAZoCWgPQwgxtDo5A8xzQJSGlFKUaBVLwWgWR0Cg8QBYeT3ZdX2UKGgGaAloD0MIxciSOVZgc0CUhpRSlGgVS65oFkdAoPEHUlRgqnV9lChoBmgJaA9DCNQpj24EzXJAlIaUUpRoFUvdaBZHQKDxE163RXx1fZQoaAZoCWgPQwgy/+ib9ERzQJSGlFKUaBVLu2gWR0Cg8RYwZflZdX2UKGgGaAloD0MI3lm77YIqc0CUhpRSlGgVS+hoFkdAoPEpqsU7CHV9lChoBmgJaA9DCAGh9fDlNHNAlIaUUpRoFUvgaBZHQKDxMBOHnEF1fZQoaAZoCWgPQwiXVG03wb5xQJSGlFKUaBVLv2gWR0Cg8bKg7HQydX2UKGgGaAloD0MIEk2giMWdckCUhpRSlGgVS8VoFkdAoPHJAQg9vHV9lChoBmgJaA9DCJ87wf7rLXFAlIaUUpRoFUvFaBZHQKDx19GZuyh1fZQoaAZoCWgPQwh97C5QEsVxQJSGlFKUaBVLzWgWR0ChJSc0+C9RdX2UKGgGaAloD0MITn6LTtZCc0CUhpRSlGgVS99oFkdAoSWgKUmlZXV9lChoBmgJaA9DCPziUpX2enFAlIaUUpRoFUvBaBZHQKElnw5NoJ11fZQoaAZoCWgPQwgsYthhTF5zQJSGlFKUaBVL02gWR0ChJZ/En9ehdX2UKGgGaAloD0MI/3dEhaqLcECUhpRSlGgVS7RoFkdAoSW5wGW2PXV9lChoBmgJaA9DCCf6fJQRRHFAlIaUUpRoFUupaBZHQKEl5SG8Emp1fZQoaAZoCWgPQwizJasiXD90QJSGlFKUaBVL52gWR0ChJgUr9VFQdX2UKGgGaAloD0MIpnud1BcNckCUhpRSlGgVS8VoFkdAoSYvmV7hN3V9lChoBmgJaA9DCLml1ZB4THJAlIaUUpRoFUvJaBZHQKEmcrHU+cJ1fZQoaAZoCWgPQwjRzJNrCkZxQJSGlFKUaBVLxmgWR0ChJo+Wv8qGdX2UKGgGaAloD0MIskgT74DHcECUhpRSlGgVS8toFkdAoSavXf642HV9lChoBmgJaA9DCED2evfH/HJAlIaUUpRoFUvYaBZHQKEmtBMzuWt1fZQoaAZoCWgPQwhHdTqQtSFyQJSGlFKUaBVLsGgWR0ChJz5K3/gjdX2UKGgGaAloD0MILdFZZlFacECUhpRSlGgVS7RoFkdAoSdpXjlxO3V9lChoBmgJaA9DCHeiJCSSr3JAlIaUUpRoFUvSaBZHQKEnq0FbFCN1fZQoaAZoCWgPQwhf04OCUphxQJSGlFKUaBVLi2gWR0ChKAcBltj1dX2UKGgGaAloD0MIyO4CJQUQckCUhpRSlGgVS8poFkdAoShVyWAwwnV9lChoBmgJaA9DCHibN05KenJAlIaUUpRoFUutaBZHQKEoaBkI5YJ1fZQoaAZoCWgPQwj6JeKt88JxQJSGlFKUaBVLkmgWR0ChKHMuvlltdX2UKGgGaAloD0MIW+7MBMNackCUhpRSlGgVS89oFkdAoSja3LFGX3V9lChoBmgJaA9DCCZUcHhBXHNAlIaUUpRoFUvSaBZHQKEo5RPXTVl1fZQoaAZoCWgPQwijQJ/I04FyQJSGlFKUaBVL2WgWR0ChKQEl/pdKdX2UKGgGaAloD0MIuYjvxCxBbkCUhpRSlGgVS7NoFkdAoSl+t0V8C3V9lChoBmgJaA9DCEg3wqKidXRAlIaUUpRoFUvEaBZHQKEph3W4EwF1fZQoaAZoCWgPQwinr+drlsdwQJSGlFKUaBVLwGgWR0ChKZPRzBAOdX2UKGgGaAloD0MIYroQqz/ocECUhpRSlGgVS7xoFkdAoSmo3rD633V9lChoBmgJaA9DCHpVZ7UAw3BAlIaUUpRoFUuTaBZHQKEqROmBOHp1fZQoaAZoCWgPQwhMbhRZa01yQJSGlFKUaBVLyGgWR0ChKk/IbOu8dX2UKGgGaAloD0MI5zqNtJTucUCUhpRSlGgVTSEBaBZHQKEqZHbypaR1fZQoaAZoCWgPQwiARunSvwRyQJSGlFKUaBVLxmgWR0ChKokgwGnodX2UKGgGaAloD0MI4/4j02EAc0CUhpRSlGgVTfIBaBZHQKEqqhHLA591fZQoaAZoCWgPQwi3JAfs6jJ0QJSGlFKUaBVL42gWR0ChKqwyRB/rdX2UKGgGaAloD0MIc0urIXFwcUCUhpRSlGgVS65oFkdAoSrEj3VTaXV9lChoBmgJaA9DCCcSTDVzGXRAlIaUUpRoFUu7aBZHQKEq1zMA3kx1fZQoaAZoCWgPQwj3yrxVV4VzQJSGlFKUaBVLuWgWR0ChKuLlNlAedX2UKGgGaAloD0MIZtr+lZXMTECUhpRSlGgVS1VoFkdAoSs26RQrMHV9lChoBmgJaA9DCIqtoGlJb3FAlIaUUpRoFUvBaBZHQKErOg5BC2N1fZQoaAZoCWgPQwi8B+i+3JNwQJSGlFKUaBVLpmgWR0ChK2O1v2oOdX2UKGgGaAloD0MIOq+xS1TPcUCUhpRSlGgVS9JoFkdAoSuC8vmHQHV9lChoBmgJaA9DCJfGL7xS8HJAlIaUUpRoFUvbaBZHQKEriOMl1KZ1fZQoaAZoCWgPQwhqF9NMN5BxQJSGlFKUaBVLzWgWR0ChK79kauOkdX2UKGgGaAloD0MI6bmFrkRQc0CUhpRSlGgVS81oFkdAoSvYeT3Zf3V9lChoBmgJaA9DCHbicrzCRHFAlIaUUpRoFUupaBZHQKEr956dDpl1fZQoaAZoCWgPQwi4j9yatIdwQJSGlFKUaBVNBAFoFkdAoSxTqfOD8XV9lChoBmgJaA9DCPhVuVD53nFAlIaUUpRoFUuwaBZHQKEsYqU/wAl1fZQoaAZoCWgPQwiPi2oRkeJwQJSGlFKUaBVL2WgWR0ChLGU0elsQdX2UKGgGaAloD0MIbvjddAtKcUCUhpRSlGgVS7hoFkdAoSx5l18stnV9lChoBmgJaA9DCPmFV5J8NnFAlIaUUpRoFUuzaBZHQKEshUOuq3p1fZQoaAZoCWgPQwiFeY8zzYpuQJSGlFKUaBVLs2gWR0ChLJkupS75dX2UKGgGaAloD0MIgEbp0r+BcUCUhpRSlGgVS8RoFkdAoSzOgUUO/nV9lChoBmgJaA9DCGZMwRonL3RAlIaUUpRoFUvpaBZHQKEs0IUrTYx1fZQoaAZoCWgPQwiHiQYp+BdyQJSGlFKUaBVLwGgWR0ChLQ8Gkep5dX2UKGgGaAloD0MIFJUNa6qLcUCUhpRSlGgVS7VoFkdAoS0YXuVopXV9lChoBmgJaA9DCAIR4spZ3nBAlIaUUpRoFUuraBZHQKEtGlyBCld1fZQoaAZoCWgPQwhTQUXV75FyQJSGlFKUaBVLmWgWR0ChLWEt/WlNdX2UKGgGaAloD0MIdF/ObNeHc0CUhpRSlGgVS+doFkdAoS1l1MdtEXV9lChoBmgJaA9DCOtWz0mvO3JAlIaUUpRoFUvPaBZHQKEtcO9WZJF1fZQoaAZoCWgPQwgZA+s4ftdxQJSGlFKUaBVL12gWR0ChLbksJ6Y3dX2UKGgGaAloD0MIrkoi++D+cUCUhpRSlGgVS9JoFkdAoS3F3fQ8fXV9lChoBmgJaA9DCNQnucNmmnFAlIaUUpRoFUubaBZHQKEt6YPXkHV1fZQoaAZoCWgPQwjE7juGR5hvQJSGlFKUaBVLpGgWR0ChLfI24uscdX2UKGgGaAloD0MICf63kl1Ic0CUhpRSlGgVS8doFkdAoS4weNkvsnV9lChoBmgJaA9DCAFO7+J9N29AlIaUUpRoFUumaBZHQKEuTEm6XjV1fZQoaAZoCWgPQwjdtBmn4VNyQJSGlFKUaBVL0WgWR0ChLkvz4DcNdX2UKGgGaAloD0MIHCeFeQ9Dc0CUhpRSlGgVS99oFkdAoS5cS/TLGXV9lChoBmgJaA9DCL76eOg7B3BAlIaUUpRoFUvGaBZHQKEuYwkgOjJ1fZQoaAZoCWgPQwitF0M5kWVyQJSGlFKUaBVLzGgWR0ChLqH4fwI/dX2UKGgGaAloD0MIGjbK+k0fckCUhpRSlGgVS5loFkdAoS7GFpPAPHV9lChoBmgJaA9DCACquHGLr3JAlIaUUpRoFUu4aBZHQKEuxSVGCqZ1fZQoaAZoCWgPQwiFfNCzGT5xQJSGlFKUaBVLv2gWR0ChLsq814xDdX2UKGgGaAloD0MImgtcHqs3c0CUhpRSlGgVS9FoFkdAoS75eJHiFXV9lChoBmgJaA9DCJYhjnVxcHFAlIaUUpRoFUu6aBZHQKEvENkOI691fZQoaAZoCWgPQwhB8WPMXSNzQJSGlFKUaBVL3WgWR0ChL2x/mT1TdX2UKGgGaAloD0MI7l2DvrSgckCUhpRSlGgVS9ZoFkdAoS+pFPSDy3V9lChoBmgJaA9DCLvvGB67yHBAlIaUUpRoFUuaaBZHQKEvrOafBep1fZQoaAZoCWgPQwjxgojUtE9xQJSGlFKUaBVLwWgWR0ChL7H/95yEdX2UKGgGaAloD0MISUxQw7dAcUCUhpRSlGgVS8JoFkdAoS/5aPjn3nV9lChoBmgJaA9DCIv8+iF2CnNAlIaUUpRoFUu6aBZHQKEwAnNxEOR1fZQoaAZoCWgPQwjbTfBNEylxQJSGlFKUaBVL+mgWR0ChMEB1s+FDdX2UKGgGaAloD0MIhXr6CHzpcUCUhpRSlGgVS8ZoFkdAoTA+hPCVKXV9lChoBmgJaA9DCJbOh2fJ0XFAlIaUUpRoFUvTaBZHQKEwWBHTZxt1fZQoaAZoCWgPQwjkTX6LDhBwQJSGlFKUaBVLtGgWR0ChMIAx8D0UdX2UKGgGaAloD0MIWmPQCSHRcECUhpRSlGgVS8toFkdAoTCRaNdZ73V9lChoBmgJaA9DCKaYg6BjjXFAlIaUUpRoFUvKaBZHQKEwsu+RHPN1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 1240,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
 
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 20,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4bc2a722dfbbb6d40d2264653286be5f424fde82ec0fcdb0d94b9cade4345d12
3
- size 88057
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff07a3fef64349fad164fc4b6003885ab1f57aa079ec989aa9acb9695a769d89
3
+ size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2d467320f69bf3a24331224d0ad6ce90488d63104d571021fafb9425757f1b50
3
  size 43393
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f00a1680be6a4974c8608fa48d37086d3c8e69af1dad64db0404acd1c54179d3
3
  size 43393
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -227.80121294705313, "std_reward": 21.04568762776565, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T22:53:04.149462"}
 
1
+ {"mean_reward": 270.2649818977638, "std_reward": 24.007949778773643, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-21T02:09:41.287010"}