--- library_name: transformers language: - ha license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - eldad-akhaumere/common_voice_16_0_ metrics: - wer model-index: - name: Whisper Small Ha v10 - Eldad Akhaumere results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.0 type: eldad-akhaumere/common_voice_16_0_ config: ha split: None args: 'config: ha, split: test' metrics: - name: Wer type: wer value: 79.57463115539375 --- # Whisper Small Ha v10 - Eldad Akhaumere This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - Loss: 2.3326 - Wer Ortho: 81.6211 - Wer: 79.5746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - num_epochs: 90.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-------:|:----:|:---------------:|:---------:|:-------:| | 0.0914 | 3.1847 | 500 | 1.7962 | 85.2344 | 83.1194 | | 0.0298 | 6.3694 | 1000 | 1.9290 | 82.9492 | 80.9734 | | 0.022 | 9.5541 | 1500 | 2.0141 | 84.1797 | 82.4104 | | 0.021 | 12.7389 | 2000 | 2.1154 | 80.8984 | 78.8848 | | 0.0141 | 15.9236 | 2500 | 2.1146 | 83.8086 | 81.9506 | | 0.0101 | 19.1083 | 3000 | 2.2107 | 79.2383 | 77.5628 | | 0.0072 | 22.2930 | 3500 | 2.2648 | 82.5391 | 80.9925 | | 0.0084 | 25.4777 | 4000 | 2.3229 | 81.3477 | 79.0190 | | 0.0116 | 28.6624 | 4500 | 2.3326 | 81.6211 | 79.5746 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0