File size: 67,184 Bytes
50eecee 2307f6e 50eecee 2307f6e 50eecee 2307f6e 50eecee 2307f6e 50eecee 2307f6e 50eecee 2307f6e 50eecee 2307f6e 50eecee f67bb08 50eecee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 |
import os
# Set parallelism env var *before* importing tokenizers
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
# Import necessary dataset functions, including concatenate_datasets if needed later
from datasets import load_dataset, disable_caching, concatenate_datasets
from tokenizers import Tokenizer, models, trainers, pre_tokenizers, processors, decoders
import math
import re
from datetime import datetime
from contextlib import nullcontext
from collections import defaultdict
import logging
import random # For shuffling combined data
# Disable caching for datasets if needed, helps ensure reprocessing
# disable_caching()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
force=True # Add this
)
# Configuration
CONFIG = {
# --- Scaled Parameters ---
"dim": 768,
"n_layers": 16,
"n_heads": 16,
"ff_dim": 3072, # Explicitly set to 4 * dim
# --- Kept Parameters ---
"dropout": 0.1,
"max_seq_len": 512,
"vocab_size": 32000, # Fixed by tokenizer
# --- Training/Dataset Parameters ---
"batch_size": 12,
"checkpoint_interval": 2000,
"debug_interval": 400,
# --- ADDED CoQA and QuAC ---
"datasets": ["daily_dialog", "empathetic_dialogues", "blended_skill_talk", "AlekseyKorshuk/persona-chat"],
"tokenizer_name": "hrom_tokenizer.json", # New name for expanded tokenizer
"checkpoint_dir": "checkpoints", # Separate directory for expanded data model
# --- Increased samples per dataset slightly for tokenizer ---
"tokenizer_train_samples_per_dataset": 100000, # Use same limit for all, incl. new ones
"learning_rate": 1e-5,
"warmup_steps": 1000,
"max_turns": 8, # Keep max_turns limit for Q&A datasets too
"max_checkpoints": 5,
"num_epochs": 30,
"grad_accum_steps": 16
}
# --- Model Definition (HROM, HROMBlock, HROMAttention, SwiGLU, RoPE) ---
# (These classes remain unchanged from the previous version)
class RotaryEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
def forward(self, seq_len):
t = torch.arange(seq_len, device=self.inv_freq.device).type_as(self.inv_freq)
freqs = torch.einsum("i, j -> i j", t, self.inv_freq)
if seq_len == 0:
return torch.empty((0, self.inv_freq.shape[0] * 2), device=self.inv_freq.device)
# Defensive reshape only if necessary
if freqs.shape[0] != seq_len and seq_len > 0:
freqs = freqs.reshape(seq_len, -1)
elif seq_len == 0: # Handle edge case for empty sequences
return torch.empty((0, self.inv_freq.shape[0]*2), device=self.inv_freq.device, dtype=self.inv_freq.dtype)
return torch.cat((freqs, freqs), dim=-1)
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(pos, t):
# pos: (T, dim_rotary), t: (B, H, T, Head_Dim)
pos = pos.to(t.device, dtype=t.dtype)
pos = pos.unsqueeze(0).unsqueeze(1) # Shape: (1, 1, T, dim_rotary)
tensor_seq_len = t.shape[2]
pos_seq_len = pos.shape[2]
if pos_seq_len < tensor_seq_len:
logging.warning(f"RoPE Warning: pos sequence length ({pos_seq_len}) is shorter than tensor sequence length ({tensor_seq_len}). Using truncated tensor length for RoPE.")
# This case is tricky, maybe only apply to the length of pos?
# Or indicates an issue upstream. Let's slice t for now, though it's unusual.
t_rotated = t[:, :, :pos_seq_len, :]
pos = pos[:, :, :pos_seq_len, :] # Ensure pos matches the sliced tensor length
# Apply rotation only to the slice
cos_pos = pos.cos()
sin_pos = pos.sin()
t_rotated = (t_rotated * cos_pos) + (rotate_half(t_rotated) * sin_pos)
# Concatenate the rotated part with the un-rotated part
t_unrotated = t[:, :, pos_seq_len:, :]
return torch.cat([t_rotated, t_unrotated], dim=2)
elif pos_seq_len > tensor_seq_len:
pos = pos[:, :, :tensor_seq_len, :] # Slice pos to match tensor
# Check dimension match after potential slicing
if pos.shape[-1] != t.shape[-1]:
logging.error(f"Mismatched dimensions for RoPE: pos ({pos.shape[-1]}) vs t ({t.shape[-1]})")
raise ValueError("Rotary embedding dimension must match head dimension.")
cos_pos = pos.cos()
sin_pos = pos.sin()
rotated_t = (t * cos_pos) + (rotate_half(t) * sin_pos)
return rotated_t
class SwiGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return x * nn.functional.gelu(gate)
class HROMAttention(nn.Module):
def __init__(self):
super().__init__()
self.dim = CONFIG["dim"]
self.n_heads = CONFIG["n_heads"]
self.head_dim = self.dim // self.n_heads
if self.dim % self.n_heads != 0:
raise ValueError("dim must be divisible by n_heads")
self.qkv = nn.Linear(self.dim, 3 * self.dim)
self.proj = nn.Linear(self.dim, self.dim)
self.rotary = RotaryEmbedding(self.head_dim)
self.dropout = nn.Dropout(CONFIG["dropout"])
def forward(self, x, mask=None):
B, T, C = x.shape
qkv = self.qkv(x)
qkv = qkv.reshape(B, T, 3, self.n_heads, self.head_dim)
q, k, v = qkv.unbind(2)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
# Generate RoPE embeddings for the current sequence length T
pos = self.rotary(T) # Shape (T, Head_Dim)
# Apply RoPE
q = apply_rotary_pos_emb(pos, q)
k = apply_rotary_pos_emb(pos, k)
# Attention calculation
attn_scores = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
if mask is not None:
# Ensure mask is broadcastable (B, 1, T, T)
if mask.dim() == 2: # (B, T) -> (B, 1, 1, T) -> add with causal = (B, 1, T, T)
mask = mask.unsqueeze(1).unsqueeze(2)
elif mask.dim() == 3: # (B, T, T)
mask = mask.unsqueeze(1)
# Add mask AFTER scaling scores
attn_scores = attn_scores + mask # Add large negative values for masked positions
# Softmax and dropout
attn_probs = torch.softmax(attn_scores.float(), dim=-1).to(dtype=x.dtype) # Use float for stability
attn_probs = self.dropout(attn_probs)
# Output projection
output = attn_probs @ v
output = output.transpose(1, 2).reshape(B, T, self.dim)
return self.proj(output)
class HROMBlock(nn.Module):
def __init__(self):
super().__init__()
self.attn = HROMAttention()
self.ff = nn.Sequential(
nn.Linear(CONFIG["dim"], 2 * CONFIG["ff_dim"]),
SwiGLU(),
nn.Linear(CONFIG["ff_dim"], CONFIG["dim"])
)
self.norm1 = nn.LayerNorm(CONFIG["dim"])
self.norm2 = nn.LayerNorm(CONFIG["dim"])
self.dropout = nn.Dropout(CONFIG["dropout"])
def forward(self, x, mask=None):
# Pre-Normalization
normed_x = self.norm1(x)
attn_output = self.attn(normed_x, mask)
x = x + self.dropout(attn_output)
normed_x = self.norm2(x)
ff_output = self.ff(normed_x)
x = x + self.dropout(ff_output)
return x
class HROM(nn.Module):
def __init__(self):
super().__init__()
self.embed = nn.Embedding(CONFIG["vocab_size"], CONFIG["dim"])
self.blocks = nn.ModuleList([HROMBlock() for _ in range(CONFIG["n_layers"])])
self.norm = nn.LayerNorm(CONFIG["dim"])
self.head = nn.Linear(CONFIG["dim"], CONFIG["vocab_size"])
self.dropout = nn.Dropout(CONFIG["dropout"]) # Add dropout after embedding
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
torch.nn.init.zeros_(module.bias)
torch.nn.init.ones_(module.weight)
def forward(self, input_ids, attention_mask=None):
B, T = input_ids.shape
x = self.embed(input_ids)
x = self.dropout(x) # Apply dropout after embedding
# Create the combined mask for attention
combined_mask = None
# Start with causal mask valid for all sequences in batch
causal_mask = torch.triu(torch.ones(T, T, device=input_ids.device) * float('-inf'), diagonal=1)
combined_mask = causal_mask.unsqueeze(0).unsqueeze(1) # (1, 1, T, T)
if attention_mask is not None:
# Process padding mask from attention_mask (0 = pad, 1 = real)
# Convert 0s to -inf, 1s to 0
pad_mask = (1.0 - attention_mask.to(torch.float32)) * torch.finfo(torch.float32).min
pad_mask = pad_mask.unsqueeze(1).unsqueeze(2) # (B, 1, 1, T)
# Add padding mask to causal mask. Broadcasting ensures (B, 1, T, T)
# Where pad_mask is -inf, the result is -inf. Otherwise, it's the causal value.
combined_mask = combined_mask + pad_mask
# Ensure mask dtype matches data dtype (esp. for AMP)
combined_mask = combined_mask.to(dtype=x.dtype)
for block in self.blocks:
x = block(x, combined_mask) # Pass the combined mask to each block
x = self.norm(x)
logits = self.head(x)
return logits
# --- Tokenizer Training ---
class TokenizerTrainer:
def __init__(self):
self.tokenizer = Tokenizer(models.BPE())
self.tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False)
self.tokenizer.decoder = decoders.ByteLevel()
self.special_tokens = ["<pad>", "<s>", "</s>", "<unk>", "<user>", "<assistant>"]
# Use the updated tokenizer name from CONFIG
self.tokenizer_path = os.path.join("tokenizer", CONFIG["tokenizer_name"])
self.tokenizer_dir = os.path.dirname(self.tokenizer_path)
def _clean_text(self, text):
text = str(text) # Ensure text is string
text = re.sub(r'_comma_', ',', text)
# Allow alphanumeric, whitespace, and basic punctuation including quotes
text = re.sub(r'[^\w\s.,!?\'\-:;<>"]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def train(self, dataset_names):
logging.info("Starting tokenizer training...")
text_samples = []
samples_per_dataset = CONFIG['tokenizer_train_samples_per_dataset']
# --- Process DailyDialog ---
if "daily_dialog" in dataset_names:
logging.info(f"Loading daily_dialog for tokenizer training (max {samples_per_dataset} dialogues)...")
try:
# Limit dialogues loaded directly using slicing
dd_dataset = load_dataset("daily_dialog", split=f"train[:{samples_per_dataset}]", trust_remote_code=True) # Add trust_remote_code=True
logging.info("Processing daily_dialog...")
for entry in dd_dataset:
formatted_dialogue = []
dialogue = entry['dialog'][:CONFIG["max_turns"]]
for i, utterance in enumerate(dialogue):
role = "<user>" if i % 2 == 0 else "<assistant>"
cleaned_utterance = self._clean_text(utterance)
if cleaned_utterance: # Only add non-empty turns
formatted_dialogue.append(f"{role} {cleaned_utterance}")
if formatted_dialogue: # Only add if dialogue is not empty after cleaning
text_samples.append(" </s> ".join(formatted_dialogue))
except Exception as e:
logging.error(f"Failed to load or process daily_dialog for tokenizer: {e}")
# --- Process EmpatheticDialogues ---
if "empathetic_dialogues" in dataset_names:
logging.info(f"Loading empathetic_dialogues for tokenizer training (max {samples_per_dataset} dialogues)...")
try:
# Load more initially to ensure we get enough unique conversations (adjust multiplier if needed)
ed_dataset = load_dataset("empathetic_dialogues", split=f"train[:{samples_per_dataset * 3}]", trust_remote_code=True) # Add trust_remote_code=True
logging.info("Processing empathetic_dialogues...")
conversations = defaultdict(list)
processed_conv_count = 0
# Group utterances by conv_id first
grouped_by_conv = defaultdict(list)
for entry in ed_dataset:
grouped_by_conv[entry['conv_id']].append(entry)
# Process conversations ensuring max samples limit
for conv_id, entries in grouped_by_conv.items():
if processed_conv_count >= samples_per_dataset:
break
# Sort by utterance_idx to maintain order
sorted_entries = sorted(entries, key=lambda x: x['utterance_idx'])
formatted_dialogue = []
# Handle context and first utterance
if sorted_entries[0]['context']:
cleaned_context = self._clean_text(sorted_entries[0]['context'])
if cleaned_context:
formatted_dialogue.append(f"<user> {cleaned_context}") # Assume context is user start
# Process subsequent utterances
last_role = '<user>' if formatted_dialogue else None # Set initial last role based on context
for entry in sorted_entries:
cleaned_utterance = self._clean_text(entry['utterance'])
if cleaned_utterance:
# Determine role based on alternation
current_role = '<assistant>' if last_role == '<user>' else '<user>'
formatted_dialogue.append(f"{current_role} {cleaned_utterance}")
last_role = current_role # Update last role
# Apply max turns limit to the formatted turns
formatted_dialogue = formatted_dialogue[:CONFIG["max_turns"]]
if formatted_dialogue:
text_samples.append(" </s> ".join(formatted_dialogue))
processed_conv_count += 1 # Count processed unique conversations
except Exception as e:
logging.error(f"Failed to load or process empathetic_dialogues for tokenizer: {e}")
# --- Process BlendedSkillTalk ---
if "blended_skill_talk" in dataset_names:
logging.info(f"Loading blended_skill_talk for tokenizer training (max {samples_per_dataset} dialogues)...")
try:
# Load dialogues - BST is structured differently, slice directly
bst_dataset = load_dataset("blended_skill_talk", split=f"train[:{samples_per_dataset}]", trust_remote_code=True) # Add trust_remote_code=True
logging.info("Processing blended_skill_talk...")
for entry in bst_dataset:
formatted_dialogue = []
# Combine the dialogue history and the final two turns
dialogue_turns_raw = entry['previous_utterance']
# Add final utterances if they exist and are not empty strings
if entry.get('free_turker_utterance'):
dialogue_turns_raw.append(entry['free_turker_utterance'])
if entry.get('guided_turker_utterance'):
dialogue_turns_raw.append(entry['guided_turker_utterance'])
turns_to_process = dialogue_turns_raw[:CONFIG["max_turns"]] # Apply max turns limit
for i, utterance in enumerate(turns_to_process):
role = "<user>" if i % 2 == 0 else "<assistant>" # Assume simple alternation
cleaned_utterance = self._clean_text(utterance)
if cleaned_utterance:
formatted_dialogue.append(f"{role} {cleaned_utterance}")
if formatted_dialogue:
text_samples.append(" </s> ".join(formatted_dialogue))
except Exception as e:
logging.error(f"Failed to load or process blended_skill_talk for tokenizer: {e}")
# --- Process PersonaChat ---
if "AlekseyKorshuk/persona-chat" in dataset_names: # Correct dataset identifier
pc_dataset_name = "AlekseyKorshuk/persona-chat"
logging.info(f"Loading {pc_dataset_name} for tokenizer training (max {samples_per_dataset} dialogues)...")
try:
pc_dataset = load_dataset(pc_dataset_name, split=f"train[:{samples_per_dataset}]", trust_remote_code=True) # Add trust_remote_code=True, Correct dataset identifier
logging.info(f"Processing {pc_dataset_name}...")
for entry in pc_dataset:
# PersonaChat often has 'utterances' containing 'history'
if 'utterances' in entry and entry['utterances']:
# Get the history from the last item in utterances for the full dialogue
history = entry['utterances'][-1]['history']
history = history[:CONFIG["max_turns"]] # Apply max turns
formatted_dialogue = []
for i, utterance in enumerate(history):
role = "<user>" if i % 2 == 0 else "<assistant>" # Assume simple alternation
cleaned_utterance = self._clean_text(utterance)
if cleaned_utterance:
formatted_dialogue.append(f"{role} {cleaned_utterance}")
if formatted_dialogue:
text_samples.append(" </s> ".join(formatted_dialogue))
else:
logging.warning(f"Skipping {pc_dataset_name} entry due to unexpected structure: {entry}")
except Exception as e:
logging.error(f"Failed to load or process {pc_dataset_name} for tokenizer: {e}")
logging.info(f"Total text samples for tokenizer training: {len(text_samples)}")
if not text_samples:
raise ValueError("No text samples collected for tokenizer training. Check dataset loading and paths.")
# Ensure tokenizer directory exists before training
os.makedirs(self.tokenizer_dir, exist_ok=True)
logging.info(f"Training BPE tokenizer with vocab size {CONFIG['vocab_size']}...")
trainer = trainers.BpeTrainer(
vocab_size=CONFIG["vocab_size"],
special_tokens=self.special_tokens,
min_frequency=2, # Keep min_frequency low with more data
show_progress=True
)
# Make sure text_samples is an iterator or list of strings
def text_iterator():
for sample in text_samples:
yield sample
self.tokenizer.train_from_iterator(text_iterator(), trainer=trainer, length=len(text_samples))
eos_token_id = self.tokenizer.token_to_id("</s>")
if eos_token_id is None:
logging.warning("</s> token not found in trained tokenizer vocab! Using <pad> as fallback for post-processor.")
eos_token_id = self.tokenizer.token_to_id("<pad>") or 0 # Fallback needed
# Configure post-processor (adjust if needed based on how you structure input/output)
self.tokenizer.post_processor = processors.TemplateProcessing(
single="$A </s>",
pair="$A </s> $B </s>", # How to handle pairs - maybe just use single always?
special_tokens=[("</s>", eos_token_id)],
)
logging.info(f"Saving tokenizer to {self.tokenizer_path}")
self.tokenizer.save(self.tokenizer_path)
logging.info("Tokenizer training complete.")
def get_tokenizer(self):
if not os.path.exists(self.tokenizer_path):
raise FileNotFoundError(f"Tokenizer file not found at {self.tokenizer_path}. Train tokenizer first.")
tokenizer = Tokenizer.from_file(self.tokenizer_path)
# Verify special tokens crucial for processing exist
required_tokens = ["<pad>", "<s>", "</s>", "<unk>", "<user>", "<assistant>"]
for token in required_tokens:
if tokenizer.token_to_id(token) is None:
raise ValueError(f"Crucial special token '{token}' not found in loaded tokenizer '{self.tokenizer_path}'!")
return tokenizer
# --- Dataset Loading and Processing ---
class CombinedChatDataset(Dataset):
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.pad_id = self.tokenizer.token_to_id("<pad>")
self.eos_id = self.tokenizer.token_to_id("</s>")
self.bos_id = self.tokenizer.token_to_id("<s>")
self.user_id = self.tokenizer.token_to_id("<user>")
self.assistant_id = self.tokenizer.token_to_id("<assistant>")
self.max_length = CONFIG["max_seq_len"]
# Reuse cleaning function from TokenizerTrainer instance
self._clean_text = TokenizerTrainer()._clean_text
self.all_processed_conversations = []
# --- Process DailyDialog ---
if "daily_dialog" in CONFIG["datasets"]:
logging.info("Loading and processing daily_dialog dataset...")
try:
dd_dataset = load_dataset("daily_dialog", split="train", trust_remote_code=True) # Add trust_remote_code=True
logging.info(f"Processing {len(dd_dataset)} daily_dialog conversations...")
for entry in dd_dataset:
conversation = []
dialogue = entry['dialog'][:CONFIG["max_turns"]]
if not dialogue: continue
for i, utterance in enumerate(dialogue):
role = "<user>" if i % 2 == 0 else "<assistant>"
cleaned_text = self._clean_text(utterance)
if cleaned_text:
conversation.append({'role': role, 'text': cleaned_text})
if conversation:
self.all_processed_conversations.append(conversation)
except Exception as e:
logging.error(f"Failed to load or process daily_dialog for training: {e}")
# --- Process EmpatheticDialogues ---
if "empathetic_dialogues" in CONFIG["datasets"]:
logging.info("Loading and processing empathetic_dialogues dataset...")
try:
ed_dataset = load_dataset("empathetic_dialogues", split="train", trust_remote_code=True) # Add trust_remote_code=True
logging.info("Grouping empathetic_dialogues by conversation ID...")
conversations_grouped = defaultdict(list)
for entry in ed_dataset:
conversations_grouped[entry['conv_id']].append(entry)
logging.info(f"Processing {len(conversations_grouped)} empathetic_dialogues conversations...")
for conv_id, entries in conversations_grouped.items():
conversation = []
sorted_entries = sorted(entries, key=lambda x: x['utterance_idx'])
# Handle context as first user turn if present
if sorted_entries[0]['context']:
context_text = self._clean_text(sorted_entries[0]['context'])
if context_text:
conversation.append({'role': '<user>', 'text': context_text})
# Process utterances, assuming alternation
last_role = conversation[-1]['role'] if conversation else None # Role of the last added turn
for entry in sorted_entries:
text = self._clean_text(entry['utterance'])
if not text: continue
# Determine role based on the *last added* role
current_role = '<assistant>' if last_role == '<user>' else '<user>'
conversation.append({'role': current_role, 'text': text})
last_role = current_role # Update for next iteration
# Apply max turns limit *after* forming the full sequence
conversation = conversation[:CONFIG["max_turns"]]
if conversation:
self.all_processed_conversations.append(conversation)
except Exception as e:
logging.error(f"Failed to load or process empathetic_dialogues for training: {e}")
# --- Process BlendedSkillTalk ---
if "blended_skill_talk" in CONFIG["datasets"]:
logging.info("Loading and processing blended_skill_talk dataset...")
try:
bst_dataset = load_dataset("blended_skill_talk", split="train", trust_remote_code=True) # Add trust_remote_code=True
logging.info(f"Processing {len(bst_dataset)} blended_skill_talk conversations...")
for entry in bst_dataset:
conversation = []
# Reconstruct dialogue: history + final two turns (if they exist)
dialogue_turns_raw = entry['previous_utterance']
if entry.get('free_turker_utterance'):
dialogue_turns_raw.append(entry['free_turker_utterance'])
if entry.get('guided_turker_utterance'):
dialogue_turns_raw.append(entry['guided_turker_utterance'])
if not dialogue_turns_raw: continue # Skip if no turns found
turns_to_process = dialogue_turns_raw[:CONFIG["max_turns"]] # Apply max turns limit
for i, utterance in enumerate(turns_to_process):
role = "<user>" if i % 2 == 0 else "<assistant>" # Assume simple alternation
cleaned_text = self._clean_text(utterance)
if cleaned_text:
conversation.append({'role': role, 'text': cleaned_text})
if conversation: # Only add if not empty after cleaning/truncation
self.all_processed_conversations.append(conversation)
except Exception as e:
logging.error(f"Failed to load or process blended_skill_talk for training: {e}")
# --- Process PersonaChat ---
if "AlekseyKorshuk/persona-chat" in CONFIG["datasets"]: # Correct dataset identifier
pc_dataset_name = "AlekseyKorshuk/persona-chat"
logging.info(f"Loading and processing {pc_dataset_name} dataset...")
try:
pc_dataset = load_dataset(pc_dataset_name, split="train", trust_remote_code=True) # Add trust_remote_code=True, Correct dataset identifier
logging.info(f"Processing {len(pc_dataset)} {pc_dataset_name} conversations...")
for entry in pc_dataset:
conversation = []
if 'utterances' in entry and entry['utterances']:
# Extract the dialogue history
history = entry['utterances'][-1]['history']
history = history[:CONFIG["max_turns"]] # Apply max turns limit
for i, utterance in enumerate(history):
role = "<user>" if i % 2 == 0 else "<assistant>" # Simple alternation
cleaned_text = self._clean_text(utterance)
if cleaned_text:
conversation.append({'role': role, 'text': cleaned_text})
if conversation: # Only add if not empty
self.all_processed_conversations.append(conversation)
else:
logging.warning(f"Skipping {pc_dataset_name} entry due to unexpected structure: {entry.keys()}")
except Exception as e:
logging.error(f"Failed to load or process {pc_dataset_name} for training: {e}")
logging.info(f"Total processed conversations from all datasets: {len(self.all_processed_conversations)}")
if not self.all_processed_conversations:
raise ValueError("No processed conversations were created from any dataset. Check loading logic and dataset availability.")
logging.info("Shuffling combined dataset...")
random.shuffle(self.all_processed_conversations)
def __len__(self):
return len(self.all_processed_conversations)
def __getitem__(self, idx):
conversation = self.all_processed_conversations[idx]
formatted_ids = [self.bos_id]
for turn in conversation:
role_id = self.user_id if turn['role'] == '<user>' else self.assistant_id
# Encode without adding special tokens automatically by tokenizer
try:
utterance_ids = self.tokenizer.encode(turn['text'], add_special_tokens=False).ids
except Exception as e:
logging.error(f"Error encoding text at index {idx}, turn '{turn}': {e}")
utterance_ids = [] # Skip this utterance on error
# Check length: Current + Role + Utterance + EOS <= MaxLength
# Need +1 for role, +len(utterance), +1 for potential EOS
if len(formatted_ids) + 1 + len(utterance_ids) + 1 > self.max_length:
# Attempt to add just the role and EOS if utterance is too long
if len(formatted_ids) + 1 + 1 <= self.max_length:
formatted_ids.append(role_id)
formatted_ids.append(self.eos_id)
break # Stop adding turns
formatted_ids.append(role_id)
formatted_ids.extend(utterance_ids)
formatted_ids.append(self.eos_id)
# Final safety truncate (should be rare if logic above is correct)
if len(formatted_ids) > self.max_length:
formatted_ids = formatted_ids[:self.max_length]
# Ensure last token isn't partial (though unlikely with BPE)
# If the truncated sequence ends with a role ID, it's probably bad, remove it.
if formatted_ids and (formatted_ids[-1] == self.user_id or formatted_ids[-1] == self.assistant_id):
formatted_ids.pop()
# If after popping the role ID, it's still too long (unlikely), truncate again
if len(formatted_ids) > self.max_length:
formatted_ids = formatted_ids[:self.max_length]
# Handle case of extremely short sequences after processing
if len(formatted_ids) < 2: # Need at least BOS and one other token for input/label pair
logging.warning(f"Sequence at index {idx} is too short after processing (<2 tokens). Skipping. Original length: {len(conversation)}")
# Return None to be filtered by collate_fn
return None
input_ids = formatted_ids[:-1]
labels = formatted_ids[1:]
# Final check before returning
if len(input_ids) == 0:
logging.warning(f"Sequence at index {idx} resulted in empty input_ids after slicing. Skipping.")
return None
return {"input_ids": input_ids, "labels": labels}
@staticmethod
def collate_fn(batch):
# Filter out None items from __getitem__
batch = [item for item in batch if item is not None]
if not batch:
return None # Return None if the whole batch was invalid
max_len = max(len(item["input_ids"]) for item in batch)
# Load tokenizer once to get pad_id - ensure path matches CONFIG
try:
# Correctly reference the tokenizer path from CONFIG within the static method
tokenizer_path = os.path.join("tokenizer", CONFIG["tokenizer_name"])
# TODO: Consider passing tokenizer/pad_id if this becomes a bottleneck
tokenizer = Tokenizer.from_file(tokenizer_path)
pad_id = tokenizer.token_to_id("<pad>")
if pad_id is None: raise ValueError("<pad> token not found")
except Exception as e:
logging.error(f"Collate Error: Failed to load tokenizer or get pad_id ('{CONFIG['tokenizer_name']}'): {e}")
pad_id = 0 # Risky fallback
inputs, labels, masks = [], [], []
for item in batch:
input_len = len(item["input_ids"])
pad_len = max_len - input_len
inputs.append(item["input_ids"] + [pad_id] * pad_len)
# Pad labels with pad_id (or any ID to be ignored by CrossEntropyLoss)
labels.append(item["labels"] + [pad_id] * pad_len)
masks.append([1] * input_len + [0] * pad_len)
return {
"input_ids": torch.tensor(inputs, dtype=torch.long),
"labels": torch.tensor(labels, dtype=torch.long),
"attention_mask": torch.tensor(masks, dtype=torch.long) # Or bool
}
# --- Trainer, Safety Manager, Checkpoint Manager ---
class HROMTrainer:
def __init__(self, model, tokenizer):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Using device: {self.device}")
self.model = model.to(self.device)
self.use_amp = (self.device.type == "cuda" and hasattr(torch.cuda.amp, "GradScaler"))
self.scaler = torch.cuda.amp.GradScaler() if self.use_amp else None
logging.info(f"Automatic Mixed Precision (AMP): {'Enabled' if self.use_amp else 'Disabled'}")
self.optimizer = torch.optim.AdamW(
self.model.parameters(),
lr=CONFIG["learning_rate"], # Base LR
betas=(0.9, 0.95),
weight_decay=0.1,
fused= (self.device.type == "cuda")
)
self.tokenizer = tokenizer
self.pad_id = self.tokenizer.token_to_id("<pad>")
if self.pad_id is None:
# Attempt to get from config if available or fallback
self.pad_id = CONFIG.get("pad_token_id", 0)
logging.warning(f"<pad> token ID not found in tokenizer, using fallback ID: {self.pad_id}")
# Make sure ignore_index uses the determined pad_id
self.criterion = nn.CrossEntropyLoss(ignore_index=self.pad_id)
self.base_lr = CONFIG["learning_rate"]
self.warmup_steps = CONFIG["warmup_steps"]
def _adjust_learning_rate(self, step):
if self.warmup_steps > 0 and step < self.warmup_steps:
lr = self.base_lr * (step + 1) / self.warmup_steps
else:
# Optional: Add LR decay (e.g., cosine) after warmup
# Example: lr = self.base_lr * 0.5 * (1 + math.cos(math.pi * (step - self.warmup_steps) / (total_steps - self.warmup_steps)))
lr = self.base_lr # Keep base LR after warmup for now
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
return lr
def train_step(self, batch):
# Determine precision for autocast
if self.use_amp:
amp_dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float16
autocast_context = torch.cuda.amp.autocast(dtype=amp_dtype, enabled=self.use_amp) if self.use_amp else nullcontext()
with autocast_context:
input_ids = batch["input_ids"].to(self.device)
attention_mask = batch["attention_mask"].to(self.device)
labels = batch["labels"].to(self.device)
outputs = self.model(input_ids, attention_mask=attention_mask)
# Reshape for loss calculation
logits_flat = outputs.view(-1, outputs.size(-1)) # Shape: (B * T, vocab_size)
labels_flat = labels.view(-1) # Shape: (B * T)
# Calculate loss - ensure logits are float32 for stability esp. with AMP
loss = self.criterion(logits_flat.float(), labels_flat)
# Scale loss for gradient accumulation
scaled_loss = loss / CONFIG["grad_accum_steps"]
# Backward pass
if self.use_amp and self.scaler:
self.scaler.scale(scaled_loss).backward()
else:
scaled_loss.backward()
return loss.item() # Return the unscaled loss for logging
def clip_and_step(self, current_optimizer_step):
current_lr = self._adjust_learning_rate(current_optimizer_step)
# Gradient Clipping *before* optimizer step
if self.use_amp and self.scaler:
# Unscale first - important before clipping
self.scaler.unscale_(self.optimizer)
# Clip grad norm
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
# Optimizer step (with scaler)
self.scaler.step(self.optimizer)
# Update scaler for next iteration
self.scaler.update()
else:
# Clip grad norm
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
# Optimizer step
self.optimizer.step()
# Zero gradients *after* stepping
self.optimizer.zero_grad(set_to_none=True)
return current_lr
class SafetyManager:
# (No changes needed in SafetyManager implementation itself)
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
# More conservative list
self.bad_words = ["kill", "murder", "suicide", "hate", "abuse", "violence", "illegal", "harm", "die", "attack", "rape", "molest", "exploit", "terror"]
self.bad_word_ids = []
logging.info("Initializing safety manager...")
# Pre-encode bad word sequences
for word in self.bad_words:
# Encode potentially multi-token words carefully
ids = tokenizer.encode(f" {word}", add_special_tokens=False).ids # Add prefix space for BPE
if ids:
self.bad_word_ids.append(ids)
logging.debug(f"Encoded bad word '{word}' (with space) to IDs: {ids}")
# Try without space too
ids_no_space = tokenizer.encode(word, add_special_tokens=False).ids
if ids_no_space and ids_no_space != ids:
self.bad_word_ids.append(ids_no_space)
logging.debug(f"Encoded bad word '{word}' (no space) to IDs: {ids_no_space}")
if not ids and not ids_no_space:
logging.warning(f"Could not encode bad word '{word}' - skipping.")
# Pre-get special IDs
self.eos_id = self.tokenizer.token_to_id("</s>")
self.bos_id = self.tokenizer.token_to_id("<s>")
self.user_id = self.tokenizer.token_to_id("<user>")
self.assistant_id = self.tokenizer.token_to_id("<assistant>")
self.pad_id = self.tokenizer.token_to_id("<pad>")
if self.eos_id is None: logging.error("</s> token ID not found for SafetyManager!"); self.eos_id = 0
if self.bos_id is None: logging.error("<s> token ID not found for SafetyManager!"); self.bos_id = 0
if self.user_id is None: logging.error("<user> token ID not found for SafetyManager!")
if self.assistant_id is None: logging.error("<assistant> token ID not found for SafetyManager!")
if self.pad_id is None: logging.error("<pad> token ID not found for SafetyManager!"); self.pad_id = 0
def contains_sequence(self, tokens, seq):
"""Checks if the list `tokens` contains the sublist `seq`."""
if not seq or not tokens or len(tokens) < len(seq):
return False
seq_len = len(seq)
for i in range(len(tokens) - seq_len + 1):
if tokens[i : i + seq_len] == seq:
return True
return False
def content_filter(self, text_ids):
"""Checks if a list of token IDs contains any bad word sequences."""
if not isinstance(text_ids, list):
logging.warning("Content filter received non-list input.")
return True # Default to safe if input is weird
for bad_ids in self.bad_word_ids:
if self.contains_sequence(text_ids, bad_ids):
# Log the detected sequence for debugging
detected_word = self.tokenizer.decode(bad_ids)
logging.warning(f"Unsafe content detected: Found sequence corresponding to '{detected_word}' (IDs: {bad_ids}).")
return False # Unsafe
return True # Safe
def generate_safely(self, prompt, max_new_tokens=50, temperature=0.5, top_k=50):
self.model.eval()
device = next(self.model.parameters()).device
# Encode prompt, ensure it ends appropriately (e.g., with role token + EOS?)
# Let's assume the prompt ends like "<user> blah blah </s>" and we need to add "<assistant>"
prompt_ids = self.tokenizer.encode(prompt, add_special_tokens=False).ids
# Start generation sequence with BOS, prompt, and assistant token
# Ensure prompt doesn't already include BOS
if prompt_ids and prompt_ids[0] == self.bos_id:
input_ids = list(prompt_ids)
else:
input_ids = [self.bos_id] + list(prompt_ids)
# Add the assistant token to signal the model to generate the response
if self.assistant_id is not None:
input_ids.append(self.assistant_id)
else:
logging.error("Assistant token ID is None, cannot properly start generation.")
return "Error: Assistant token not found."
generated_ids = list(input_ids) # Start with the prepared input sequence
logging.debug(f"Starting safe generation with initial IDs: {generated_ids}")
with torch.no_grad():
for step in range(max_new_tokens):
# Prepare input tensor for this step - only use up to max_seq_len
current_input_ids = generated_ids[-CONFIG["max_seq_len"]:]
current_input_tensor = torch.tensor([current_input_ids]).to(device)
# Create attention mask for the current length
attention_mask = torch.ones_like(current_input_tensor)
# Model forward pass
try:
outputs = self.model(current_input_tensor, attention_mask=attention_mask)
next_token_logits = outputs[:, -1, :] # Logits for the next token
except Exception as e:
logging.error(f"Model forward pass failed during generation: {e}")
break # Stop generation on error
# --- Safety Check BEFORE sampling ---
# Apply penalties to bad word starting tokens if possible
# For now, we filter *after* sampling the token
# Sampling (Temperature, Top-K)
if temperature > 0 and temperature != 1.0:
next_token_logits = next_token_logits / temperature
if top_k > 0 and top_k < next_token_logits.size(-1): # Ensure top_k is valid
v, _ = torch.topk(next_token_logits, top_k)
# Handle potential NaN/Inf in logits before comparison
safe_logits = torch.nan_to_num(next_token_logits, nan=-float('inf'), posinf=float('inf'), neginf=-float('inf'))
threshold = v[:, [-1]]
safe_logits[safe_logits < threshold] = -float('Inf')
next_token_logits = safe_logits # Use the filtered logits
probs = torch.softmax(next_token_logits, dim=-1)
# Handle potential NaNs in probabilities before sampling
if torch.isnan(probs).any():
logging.warning("NaN detected in probabilities before sampling. Replacing with uniform distribution.")
probs = torch.ones_like(probs) / probs.size(-1) # Fallback to uniform
next_token_id = torch.multinomial(probs, num_samples=1).item()
# --- Safety Check AFTER sampling token ---
# Check if adding this token creates a bad sequence
potential_sequence_ids = generated_ids + [next_token_id]
# Check only the newly formed part for bad words for efficiency?
# Let's check the whole sequence for simplicity/robustness for now.
if not self.content_filter(potential_sequence_ids):
logging.warning(f"Potential unsafe token ({next_token_id}, '{self.tokenizer.decode([next_token_id])}') blocked POST-sampling. Stopping generation.")
# Optionally try sampling a different token? For now, just stop.
break
# Add the safe token
generated_ids.append(next_token_id)
# Check for EOS token
if next_token_id == self.eos_id:
logging.debug(f"EOS token generated at step {step+1}. Stopping generation.")
break
# Prevent infinite loops if max tokens reached
if step == max_new_tokens - 1:
logging.debug("Max new tokens reached. Stopping generation.")
# Ensure the sequence ends with EOS if it didn't naturally
if generated_ids[-1] != self.eos_id and self.eos_id is not None:
generated_ids.append(self.eos_id)
self.model.train() # Set model back to training mode
# Decode the generated part (excluding the initial prompt + assistant token)
start_index = len(input_ids)
response_ids = generated_ids[start_index:]
# Decode, skipping special tokens like EOS, BOS, PAD but potentially keeping USER/ASSISTANT
# Let's skip all special tokens for the final output text for clarity.
decoded_text = self.tokenizer.decode(response_ids, skip_special_tokens=True).strip()
return decoded_text
def debug_generation(self, prompt="<user> Tell me about your hobbies."): # Example prompt
logging.info(f"\n--- Debug Generation & Safety Check ---")
# Ensure prompt ends logically for the model (e.g., with user token and EOS)
if not prompt.strip().endswith("</s>"):
if not prompt.strip().endswith("<user>") and not prompt.strip().endswith("<assistant>"):
prompt = prompt.strip() + " </s>" # Add EOS if ends mid-sentence
else:
prompt = prompt.strip() + " </s>" # Add EOS after role token
# Ensure the prompt starts appropriately (e.g., no BOS needed here as generate_safely adds it)
if prompt.startswith("<s>"):
prompt = prompt[len("<s>"):].strip()
generated_response = self.generate_safely(prompt, max_new_tokens=60, temperature=0.7, top_k=50)
logging.info(f"Prompt Sent: '{prompt}'")
logging.info(f"Generated Response: '{generated_response}'")
logging.info("\n--- End Debug Generation ---\n")
class CheckpointManager:
def __init__(self):
# Use checkpoint directory from CONFIG
self.checkpoint_dir = CONFIG["checkpoint_dir"]
os.makedirs(self.checkpoint_dir, exist_ok=True)
logging.info(f"Checkpoint directory set to: {self.checkpoint_dir}")
def save(self, model, optimizer, step):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Use a consistent naming scheme based on the directory name if desired
prefix = os.path.basename(self.checkpoint_dir).replace("checkpoints_", "")
# Ensure step is converted to string if it's passed as something else (e.g., 'final')
step_str = str(step)
filename = f"hrom_{prefix}_step{step_str}_{timestamp}.pt"
path = os.path.join(self.checkpoint_dir, filename)
state = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"step": step if isinstance(step, int) else -1, # Store step number or -1 for non-numeric steps
"config": CONFIG # Save config with checkpoint
}
logging.info(f"Saving checkpoint to {path}...")
try:
torch.save(state, path)
logging.info(f"Checkpoint saved successfully at step {step_str}.")
self._cleanup_old_checkpoints()
except Exception as e:
logging.error(f"Failed to save checkpoint '{path}': {e}")
def _cleanup_old_checkpoints(self):
max_checkpoints = CONFIG.get("max_checkpoints", 5) # Get from config, default 5
if max_checkpoints <= 0:
return # Keep all checkpoints if max_checkpoints is non-positive
try:
# Filter only files matching the expected pattern (avoid deleting other files)
prefix = os.path.basename(self.checkpoint_dir).replace("checkpoints_", "")
pattern = re.compile(rf"hrom_{prefix}_step(\d+|.+)_(\d{{8}}_\d{{6}})\.pt")
checkpoints = []
for f in os.listdir(self.checkpoint_dir):
match = pattern.match(f)
if match:
filepath = os.path.join(self.checkpoint_dir, f)
checkpoints.append((filepath, os.path.getmtime(filepath)))
# Sort by modification time (oldest first)
checkpoints.sort(key=lambda x: x[1])
num_to_delete = len(checkpoints) - max_checkpoints
if num_to_delete > 0:
#logging.info(f"Max checkpoints ({max_checkpoints}) reached. Removing {num_to_delete} oldest checkpoints.")
for i in range(num_to_delete):
file_to_remove, _ = checkpoints[i]
try:
os.remove(file_to_remove)
#logging.info(f"Removed old checkpoint: {os.path.basename(file_to_remove)}")
except OSError as e:
logging.error(f"Error removing checkpoint {file_to_remove}: {e}")
except Exception as e:
logging.error(f"Error during checkpoint cleanup: {e}")
def load_latest(self, model, optimizer):
try:
# Filter files based on pattern and sort by time
prefix = os.path.basename(self.checkpoint_dir).replace("checkpoints_", "")
pattern = re.compile(rf"hrom_{prefix}_step(\d+|.+)_(\d{{8}}_\d{{6}})\.pt")
checkpoints = []
for f in os.listdir(self.checkpoint_dir):
match = pattern.match(f)
if match:
filepath = os.path.join(self.checkpoint_dir, f)
checkpoints.append((filepath, os.path.getmtime(filepath)))
if not checkpoints:
logging.info("No valid checkpoints found to load.")
return 0 # Start from step 0
# Sort by modification time (newest first)
checkpoints.sort(key=lambda x: x[1], reverse=True)
latest_checkpoint_path, _ = checkpoints[0]
logging.info(f"Loading latest checkpoint from: {latest_checkpoint_path}")
map_location = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
checkpoint = torch.load(latest_checkpoint_path, map_location=map_location)
# --- Config Compatibility Check (Optional but Recommended) ---
loaded_config = checkpoint.get("config", {})
# Compare key parameters that affect model architecture or data processing
critical_keys = ["dim", "n_layers", "n_heads", "ff_dim", "vocab_size", "max_seq_len", "tokenizer_name"]
mismatched_keys = []
if loaded_config:
for key in critical_keys:
# Check if key exists in both and if they differ
if key in loaded_config and key in CONFIG and loaded_config[key] != CONFIG[key]:
mismatched_keys.append((key, loaded_config[key], CONFIG[key]))
# Check if key missing in current config but present in checkpoint
elif key in loaded_config and key not in CONFIG:
mismatched_keys.append((key, loaded_config[key], "Not in current CONFIG"))
# Check if key missing in checkpoint config but present in current
elif key not in loaded_config and key in CONFIG:
mismatched_keys.append((key, "Not in loaded CONFIG", CONFIG[key]))
if mismatched_keys:
logging.warning("--- CONFIG MISMATCH DETECTED ---")
logging.warning(f"Checkpoint '{os.path.basename(latest_checkpoint_path)}' was saved with different critical parameters:")
for key, loaded_val, current_val in mismatched_keys:
logging.warning(f" - {key}: Checkpoint='{loaded_val}', Current='{current_val}'")
# Decide whether to proceed: raise error, warn, or try anyway
# For now, just warn strongly. Loading might fail or lead to issues.
logging.warning("Proceeding with loading, but results may be unexpected or errors may occur.")
else:
logging.warning("Checkpoint does not contain configuration info. Cannot check compatibility.")
# --- End Config Check ---
try:
# Strict=False can sometimes help load partially, but hides potential issues
model.load_state_dict(checkpoint['model'], strict=True)
except RuntimeError as e:
logging.error(f"Failed to load model state_dict: {e}")
logging.error("This often happens due to architecture mismatch (check CONFIG) or corrupted checkpoint.")
logging.error("Starting training from scratch.")
return 0 # Cannot resume if model loading fails
try:
optimizer.load_state_dict(checkpoint['optimizer'])
except ValueError as e:
logging.warning(f"Could not load optimizer state_dict: {e}. Optimizer state will be reset.")
# Reinitialize optimizer if state doesn't match? Or just proceed with current state.
# Resetting optimizer state is safer if parameters changed.
optimizer.state = defaultdict(dict) # Reset state
logging.warning("Optimizer state reset.")
except Exception as e:
logging.error(f"Unexpected error loading optimizer state: {e}. Starting training from scratch.")
return 0
start_step = checkpoint.get('step', 0)
# Ensure step is non-negative, resume from next step
start_step = max(0, start_step) + 1 if isinstance(start_step, int) else 0
logging.info(f"Checkpoint loaded successfully. Resuming from optimizer step {start_step}.")
# Move optimizer state tensors to the correct device
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
try:
state[k] = v.to(map_location)
except Exception as e:
logging.error(f"Failed to move optimizer tensor '{k}' to device '{map_location}': {e}")
return start_step
except FileNotFoundError:
logging.info(f"No checkpoint directory '{self.checkpoint_dir}' or files found. Starting training from scratch.")
return 0
except Exception as e:
logging.error(f"Error loading checkpoint from '{self.checkpoint_dir}': {e}. Starting training from scratch.")
# Clean up potentially partially loaded model/optimizer?
# Re-initializing might be safer depending on where the error occurred.
# For simplicity, we just return 0 here.
return 0
# --- Training Function ---
def train():
logging.info("Starting HROM training process on combined datasets (daily_dialog, empathetic_dialogues, blended_skill_talk, AlekseyKorshuk/persona-chat)...") # Corrected log message
logging.info(f"Configuration: {CONFIG}")
# --- Tokenizer Setup ---
tokenizer_trainer = TokenizerTrainer()
tokenizer_path = tokenizer_trainer.tokenizer_path
if not os.path.exists(tokenizer_path):
logging.info(f"Combined tokenizer '{CONFIG['tokenizer_name']}' not found. Training tokenizer...")
try:
# Pass trust_remote_code=True to load_dataset calls inside tokenizer training
tokenizer_trainer.train(CONFIG["datasets"])
except Exception as e:
logging.error(f"Failed during tokenizer training: {e}", exc_info=True)
return # Cannot proceed without a tokenizer
else:
logging.info(f"Loading existing combined tokenizer from {tokenizer_path}")
# Load the tokenizer instance *once* here for shared use
try:
tokenizer = tokenizer_trainer.get_tokenizer()
# Update CONFIG with actual token IDs (useful for downstream)
CONFIG['pad_token_id'] = tokenizer.token_to_id("<pad>")
CONFIG['bos_token_id'] = tokenizer.token_to_id("<s>")
CONFIG['eos_token_id'] = tokenizer.token_to_id("</s>")
logging.info(f"Loaded tokenizer. Vocab size: {tokenizer.get_vocab_size()}. Special IDs: PAD={CONFIG['pad_token_id']}, BOS={CONFIG['bos_token_id']}, EOS={CONFIG['eos_token_id']}")
except (FileNotFoundError, ValueError) as e:
logging.error(f"Failed to load tokenizer: {e}. Cannot continue.")
return
# --- Model Initialization ---
logging.info("Initializing HROM model...")
# Ensure vocab_size in config matches tokenizer
if CONFIG['vocab_size'] != tokenizer.get_vocab_size():
logging.warning(f"Config vocab_size ({CONFIG['vocab_size']}) differs from tokenizer vocab size ({tokenizer.get_vocab_size()}). Using tokenizer's size.")
CONFIG['vocab_size'] = tokenizer.get_vocab_size()
model = HROM()
# --- Calculate and Log Model Parameters ---
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.info(f"Model initialized. Total parameters: {total_params:,}")
logging.info(f"Trainable parameters: {trainable_params:,}")
logging.info(f"Parameters (Millions): Total={total_params/1e6:.2f}M, Trainable={trainable_params/1e6:.2f}M")
# --- Dataset and DataLoader ---
logging.info("Setting up combined dataset and dataloader...")
try:
logging.info("Pre-loading/caching datasets...")
for ds_name in CONFIG["datasets"]:
logging.info(f"Checking cache for '{ds_name}'...")
try:
# Load just the first example to trigger download/cache check
_ = load_dataset(ds_name, split="train[:1]", download_mode="reuse_cache_if_exists", trust_remote_code=True) # Add trust_remote_code
except Exception as e:
# Log error but try to continue, main dataset loading will handle final error
logging.error(f"Could not pre-check dataset '{ds_name}': {e}")
logging.info("Dataset download/cache check presumed complete.")
# Pass the already loaded tokenizer instance
dataset = CombinedChatDataset(tokenizer)
# Check if dataset is empty after processing
if len(dataset) == 0:
logging.error("Dataset is empty after processing all sources. Cannot train.")
return
dataloader = DataLoader(
dataset,
batch_size=CONFIG["batch_size"],
collate_fn=CombinedChatDataset.collate_fn, # Use static method
shuffle=True,
# Adjust num_workers based on available cores, be conservative
num_workers=min(4, os.cpu_count() // 2 if (os.cpu_count() and os.cpu_count() > 1) else 1),
pin_memory=torch.cuda.is_available(),
prefetch_factor=2 if torch.cuda.is_available() and os.cpu_count() and os.cpu_count() > 1 else None,
drop_last=False # Keep last batch even if smaller
)
except Exception as e:
logging.error(f"Failed to initialize dataset/dataloader: {e}", exc_info=True)
return
# --- Trainer, Checkpoint, Safety ---
logging.info("Initializing Trainer, Checkpoint Manager, and Safety Manager...")
# Pass the loaded tokenizer instance
trainer_obj = HROMTrainer(model, tokenizer)
checkpoint_manager = CheckpointManager() # Uses CONFIG["checkpoint_dir"]
safety = SafetyManager(model, tokenizer) # Pass the loaded tokenizer instance
# --- Load Checkpoint ---
start_optimizer_step = checkpoint_manager.load_latest(model, trainer_obj.optimizer)
# Ensure model is on correct device after loading
model.to(trainer_obj.device)
# --- Training Loop ---
logging.info(f"Starting training from optimizer step {start_optimizer_step}")
optimizer_step = start_optimizer_step
total_loss_accum = 0.0
# Calculate starting batch step based on loaded optimizer step and grad accum
batch_step = optimizer_step * CONFIG["grad_accum_steps"]
epochs_completed = batch_step // len(dataloader) if len(dataloader) > 0 else 0
start_epoch = epochs_completed # Start from the epoch corresponding to the loaded step
# Estimate total steps (can be useful for LR scheduling if implementing decay)
try:
if len(dataloader) == 0:
raise ValueError("DataLoader has zero length. Cannot estimate total steps.")
total_optimizer_steps = (len(dataloader) * CONFIG["num_epochs"]) // CONFIG["grad_accum_steps"]
logging.info(f"Estimated dataset size: {len(dataset)}")
logging.info(f"Estimated batches per epoch: {len(dataloader)}")
logging.info(f"Gradient Accumulation Steps: {CONFIG['grad_accum_steps']}")
logging.info(f"Effective Batch Size: {CONFIG['batch_size'] * CONFIG['grad_accum_steps']}")
logging.info(f"Target Epochs: {CONFIG['num_epochs']}")
logging.info(f"Estimated total optimizer steps for {CONFIG['num_epochs']} epochs: {total_optimizer_steps}")
except Exception as e:
logging.warning(f"Could not accurately estimate dataloader length or total steps: {e}")
total_optimizer_steps = -1 # Indicate unknown total steps
model.train() # Ensure model is in training mode
for epoch in range(start_epoch, CONFIG["num_epochs"]):
logging.info(f"--- Starting Epoch {epoch+1}/{CONFIG['num_epochs']} ---")
epoch_loss = 0.0
num_batches_in_epoch = 0
# Use enumerate starting from 1 for batch count if preferred
for i, batch in enumerate(dataloader):
# Check if batch is valid (collate_fn might return None)
if batch is None:
logging.warning(f"Skipping empty batch at step {i} in epoch {epoch+1}")
continue
# Forward and backward pass (scaled loss)
loss = trainer_obj.train_step(batch)
if loss is None or torch.isnan(torch.tensor(loss)) or torch.isinf(torch.tensor(loss)):
logging.error(f"NaN, Inf, or None loss detected: {loss}. Epoch {epoch+1}, Batch {i}, Opt Step {optimizer_step}. Stopping.")
# Try saving a 'nan_inf' checkpoint before exiting
checkpoint_manager.save(model, trainer_obj.optimizer, f"{optimizer_step}_error")
return
total_loss_accum += loss
epoch_loss += loss
num_batches_in_epoch += 1
batch_step += 1 # Increment global batch counter (tracks batches processed)
# Gradient Accumulation Check & Optimizer Step
# Check if it's time to perform an optimizer step
if batch_step % CONFIG["grad_accum_steps"] == 0:
current_lr = trainer_obj.clip_and_step(optimizer_step) # Pass current opt step for LR schedule
# Calculate average loss over accumulation steps for logging
avg_loss = total_loss_accum / CONFIG["grad_accum_steps"]
total_loss_accum = 0.0 # Reset loss accumulator
# Logging
if optimizer_step % CONFIG["debug_interval"] == 0:
logging.info(f"Epoch {epoch+1} | Opt Step {optimizer_step} | Batch Step {batch_step} | Avg Loss: {avg_loss:.4f} | LR: {current_lr:.2e}")
# Trigger debug generation less frequently or based on condition
if optimizer_step % (CONFIG["debug_interval"] * 5) == 0: # e.g., every 5 debug intervals
safety.debug_generation("<user> Hi there! How are you doing today?") # Use a generic debug prompt
# Checkpointing
if optimizer_step > 0 and optimizer_step % CONFIG["checkpoint_interval"] == 0:
logging.info(f"Checkpoint interval reached at optimizer step {optimizer_step}.")
checkpoint_manager.save(model, trainer_obj.optimizer, optimizer_step)
# Optional: Run a generation check after saving checkpoint
safety.debug_generation("<user> Hi! How are you?")
optimizer_step += 1 # Increment optimizer step count *after* performing the step
# --- End of Epoch ---
avg_epoch_loss = epoch_loss / num_batches_in_epoch if num_batches_in_epoch > 0 else 0
logging.info(f"--- Finished Epoch {epoch+1}/{CONFIG['num_epochs']} | Average Epoch Loss: {avg_epoch_loss:.4f} ---")
# Save checkpoint at the end of each epoch
checkpoint_manager.save(model, trainer_obj.optimizer, f"epoch{epoch+1}_step{optimizer_step}")
# Optionally run debug generation at end of epoch
safety.debug_generation("<user> Hi! Whats up?")
logging.info(f"Training finished after {CONFIG['num_epochs']} target epochs.")
# Final save
logging.info("Saving final model state...")
checkpoint_manager.save(model, trainer_obj.optimizer, f"final_step{optimizer_step}")
if __name__ == "__main__":
# Ensures imports happen after setting the env var if script is run directly
train() |