Ege Oezsoy
commited on
Commit
·
74033b8
1
Parent(s):
372b042
Initial model commit
Browse files- README.MD +0 -0
- endovit.pth +3 -0
- endovit_demo.py +39 -0
- requirements.txt +2 -0
README.MD
ADDED
|
File without changes
|
endovit.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ec41888fd928eb404e518d61344c25822b3c4a776f997b876db040b86a5ba21a
|
| 3 |
+
size 1341188699
|
endovit_demo.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchvision.transforms as T
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from timm.models.vision_transformer import VisionTransformer
|
| 6 |
+
from functools import partial
|
| 7 |
+
from torch import nn
|
| 8 |
+
|
| 9 |
+
# requires: pytorch 2.0.1, timm 0.9.16
|
| 10 |
+
def process_single_image(image_path, input_size=224, dataset_mean=[0.3464, 0.2280, 0.2228], dataset_std=[0.2520, 0.2128, 0.2093]):
|
| 11 |
+
# Define the transformations
|
| 12 |
+
transform = T.Compose([
|
| 13 |
+
T.Resize((input_size, input_size)),
|
| 14 |
+
T.ToTensor(),
|
| 15 |
+
T.Normalize(mean=dataset_mean, std=dataset_std)
|
| 16 |
+
])
|
| 17 |
+
|
| 18 |
+
# Open the image
|
| 19 |
+
image = Image.open(image_path).convert('RGB')
|
| 20 |
+
|
| 21 |
+
# Apply the transformations
|
| 22 |
+
processed_image = transform(image)
|
| 23 |
+
|
| 24 |
+
return processed_image
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
image_paths = sorted(Path('demo_images').glob('*.png'))
|
| 28 |
+
images = torch.stack([process_single_image(image_path) for image_path in image_paths])
|
| 29 |
+
|
| 30 |
+
device = "cuda"
|
| 31 |
+
dtype = torch.float16
|
| 32 |
+
|
| 33 |
+
model_weights = torch.load('endovit_seg.pth')['model']
|
| 34 |
+
|
| 35 |
+
model = VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)).to(device, dtype).eval()
|
| 36 |
+
loading = model.load_state_dict(model_weights, strict=False)
|
| 37 |
+
print(loading)
|
| 38 |
+
output = model.forward_features(images.to(device, dtype))
|
| 39 |
+
print(output.shape)
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.0.1
|
| 2 |
+
timm==0.9.16
|