Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- oscar-corpus/OSCAR-2301
|
4 |
+
language:
|
5 |
+
- it
|
6 |
+
tags:
|
7 |
+
- ipt-125m
|
8 |
+
---
|
9 |
+
|
10 |
+
# IPT-125m (WIP)
|
11 |
+
|
12 |
+
IPT-125m is a decoder-style transformer pretrained from scratch on 4 billion tokens of Italian text from the [OSCAR-2301](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301) dataset.
|
13 |
+
|
14 |
+
## How to Use
|
15 |
+
|
16 |
+
This model is best used with the Hugging Face `transformers` library for training and finetuning.
|
17 |
+
|
18 |
+
```python
|
19 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
20 |
+
|
21 |
+
model = AutoModelForCausalLM.from_pretrained("efederici/ipt-125m", trust_remote_code=True)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("efederici/ipt-125m")
|
23 |
+
```
|
24 |
+
|
25 |
+
## Model Description
|
26 |
+
|
27 |
+
The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways:
|
28 |
+
* It can use [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
|
29 |
+
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
|
30 |
+
* It does not use biases
|
31 |
+
|
32 |
+
| Hyperparameter | Value |
|
33 |
+
|----------------|-------|
|
34 |
+
|n_parameters | 125M |
|
35 |
+
|n_layers | 12 |
|
36 |
+
| n_heads | 12 |
|
37 |
+
| d_model | 768 |
|
38 |
+
| vocab size | 50432 |
|
39 |
+
| sequence length | 2048 |
|