--- base_model: allenai/scibert_scivocab_cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scibert-finetuned-ner results: [] --- # scibert-finetuned-ner This model is a fine-tuned version of [allenai/scibert_scivocab_cased](https://huggingface.co/allenai/scibert_scivocab_cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4445 - Precision: 0.3974 - Recall: 0.3404 - F1: 0.3667 - Accuracy: 0.9140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 121 | 0.5694 | 0.0808 | 0.0411 | 0.0545 | 0.8648 | | No log | 2.0 | 242 | 0.4878 | 0.3169 | 0.1277 | 0.1820 | 0.9020 | | No log | 3.0 | 363 | 0.4121 | 0.3422 | 0.2199 | 0.2677 | 0.9097 | | No log | 4.0 | 484 | 0.4240 | 0.4273 | 0.2624 | 0.3251 | 0.9147 | | 0.4235 | 5.0 | 605 | 0.3974 | 0.4187 | 0.2922 | 0.3442 | 0.9159 | | 0.4235 | 6.0 | 726 | 0.4125 | 0.4146 | 0.3064 | 0.3524 | 0.9140 | | 0.4235 | 7.0 | 847 | 0.4235 | 0.3713 | 0.3191 | 0.3432 | 0.9136 | | 0.4235 | 8.0 | 968 | 0.4330 | 0.3794 | 0.3348 | 0.3557 | 0.9132 | | 0.1633 | 9.0 | 1089 | 0.4481 | 0.3926 | 0.3319 | 0.3597 | 0.9133 | | 0.1633 | 10.0 | 1210 | 0.4445 | 0.3974 | 0.3404 | 0.3667 | 0.9140 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1