Commit
·
b3c2544
1
Parent(s):
7a445e8
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
-
base_model:
|
| 4 |
tags:
|
| 5 |
- generated_from_trainer
|
| 6 |
datasets:
|
|
@@ -22,67 +22,42 @@ model-index:
|
|
| 22 |
metrics:
|
| 23 |
- name: Wer
|
| 24 |
type: wer
|
| 25 |
-
value: 0.
|
|
|
|
|
|
|
| 26 |
---
|
| 27 |
|
| 28 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 29 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 30 |
|
| 31 |
# wav2vec2-large-xlsr-mvc-swahili
|
| 32 |
|
| 33 |
-
This model is a
|
| 34 |
-
It achieves the following results on the evaluation set:
|
| 35 |
-
- Loss: inf
|
| 36 |
-
- Wer: 0.3224
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
The following hyperparameters were used during training:
|
| 55 |
-
- learning_rate: 0.0003
|
| 56 |
-
- train_batch_size: 16
|
| 57 |
-
- eval_batch_size: 8
|
| 58 |
-
- seed: 42
|
| 59 |
-
- gradient_accumulation_steps: 2
|
| 60 |
-
- total_train_batch_size: 32
|
| 61 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 62 |
-
- lr_scheduler_type: linear
|
| 63 |
-
- lr_scheduler_warmup_steps: 500
|
| 64 |
-
- num_epochs: 2
|
| 65 |
-
|
| 66 |
-
### Training results
|
| 67 |
-
|
| 68 |
-
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
| 69 |
-
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
| 70 |
-
| No log | 0.17 | 100 | inf | 1.0 |
|
| 71 |
-
| No log | 0.34 | 200 | inf | 1.0 |
|
| 72 |
-
| No log | 0.5 | 300 | inf | 0.3420 |
|
| 73 |
-
| 3.3446 | 0.67 | 400 | inf | 0.3431 |
|
| 74 |
-
| 3.3446 | 0.84 | 500 | inf | 0.3500 |
|
| 75 |
-
| 3.3446 | 1.01 | 600 | inf | 0.3433 |
|
| 76 |
-
| 3.3446 | 1.17 | 700 | inf | 0.3347 |
|
| 77 |
-
| 0.1975 | 1.34 | 800 | inf | 0.3340 |
|
| 78 |
-
| 0.1975 | 1.51 | 900 | inf | 0.3307 |
|
| 79 |
-
| 0.1975 | 1.68 | 1000 | inf | 0.3233 |
|
| 80 |
-
| 0.1975 | 1.84 | 1100 | inf | 0.3224 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
### Framework versions
|
| 84 |
-
|
| 85 |
-
- Transformers 4.35.0
|
| 86 |
-
- Pytorch 2.1.0
|
| 87 |
-
- Datasets 2.14.6
|
| 88 |
-
- Tokenizers 0.14.1
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
base_model: facebook/wav2vec2-large-xlsr-53
|
| 4 |
tags:
|
| 5 |
- generated_from_trainer
|
| 6 |
datasets:
|
|
|
|
| 22 |
metrics:
|
| 23 |
- name: Wer
|
| 24 |
type: wer
|
| 25 |
+
value: 0.2
|
| 26 |
+
language:
|
| 27 |
+
- sw
|
| 28 |
---
|
| 29 |
|
|
|
|
|
|
|
| 30 |
|
| 31 |
# wav2vec2-large-xlsr-mvc-swahili
|
| 32 |
|
| 33 |
+
This model is a finetuned version of facebook/wav2vec2-large-xlsr-53. Following inspiration from [alamsher/wav2vec2-large-xlsr-53-common-voice-s](https://huggingface.co/alamsher/wav2vec2-large-xlsr-53-common-voice-sw)
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
# How to use the model
|
| 36 |
|
| 37 |
+
There was an issue with vocab, seems like there are special characters included and they were not considered during training
|
| 38 |
+
You could try
|
| 39 |
+
```python
|
| 40 |
+
from transformers import AutoProcessor, AutoModelForCTC
|
| 41 |
|
| 42 |
+
repo_name = "eddiegulay/wav2vec2-large-xlsr-mvc-swahili"
|
| 43 |
+
processor = AutoProcessor.from_pretrained(repo_name)
|
| 44 |
+
model = AutoModelForCTC.from_pretrained(repo_name)
|
| 45 |
|
| 46 |
+
def transcribe(audio_path):
|
| 47 |
+
# Load the audio file
|
| 48 |
+
audio_input, sample_rate = torchaudio.load(audio_path)
|
| 49 |
+
target_sample_rate = 16000
|
| 50 |
+
audio_input = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)(audio_input)
|
| 51 |
|
| 52 |
+
# Preprocess the audio data
|
| 53 |
+
input_dict = processor(audio_input[0], return_tensors="pt", padding=True, sampling_rate=16000)
|
| 54 |
|
| 55 |
+
# Perform inference and transcribe
|
| 56 |
+
logits = model(input_dict.input_values.to("cuda")).logits
|
| 57 |
+
pred_ids = torch.argmax(logits, dim=-1)[0]
|
| 58 |
+
transcription = processor.decode(pred_ids)
|
| 59 |
|
| 60 |
+
return transcription
|
| 61 |
|
| 62 |
+
transcript = transcribe('your_audio.mp3')
|
| 63 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|