Edison commited on
Commit
63c12d6
·
1 Parent(s): d62fe27

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -11
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
- base_model: neuralsentry/starencoder-git-commits-mlm
 
3
  tags:
4
  - generated_from_trainer
5
  metrics:
@@ -17,14 +18,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # starencoder-vulnfix-classification
19
 
20
- This model is a fine-tuned version of [neuralsentry/starencoder-git-commits-mlm](https://huggingface.co/neuralsentry/starencoder-git-commits-mlm) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.2327
23
- - Accuracy: 0.9274
24
- - Precision: 0.9691
25
- - Recall: 0.9199
26
- - F1: 0.9438
27
- - Roc Auc: 0.9310
28
 
29
  ## Model description
30
 
@@ -44,8 +45,8 @@ More information needed
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 0.0001
47
- - train_batch_size: 128
48
- - eval_batch_size: 128
49
  - seed: 420
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
@@ -55,7 +56,7 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
57
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
58
- | 0.2872 | 1.57 | 66 | 0.2017 | 0.9177 | 0.9439 | 0.9312 | 0.9375 | 0.9111 |
59
 
60
 
61
  ### Framework versions
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: neuralsentry/distilbert-git-commits-mlm
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
18
 
19
  # starencoder-vulnfix-classification
20
 
21
+ This model is a fine-tuned version of [neuralsentry/distilbert-git-commits-mlm](https://huggingface.co/neuralsentry/distilbert-git-commits-mlm) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.2247
24
+ - Accuracy: 0.9087
25
+ - Precision: 0.9401
26
+ - Recall: 0.9210
27
+ - F1: 0.9304
28
+ - Roc Auc: 0.9027
29
 
30
  ## Model description
31
 
 
45
 
46
  The following hyperparameters were used during training:
47
  - learning_rate: 0.0001
48
+ - train_batch_size: 256
49
+ - eval_batch_size: 256
50
  - seed: 420
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
58
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
59
+ | 0.36 | 1.57 | 33 | 0.2265 | 0.9124 | 0.9315 | 0.9368 | 0.9342 | 0.9006 |
60
 
61
 
62
  ### Framework versions