Update README.md
Browse files
README.md
CHANGED
|
@@ -1,5 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Product Review Sentiment Analyzer
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
This project demonstrates how to build and deploy a sentiment analysis model for product reviews using free resources.
|
| 4 |
|
| 5 |
## Project Overview
|
|
|
|
| 1 |
+
# Create a README.md file with proper metadata
|
| 2 |
+
model_card_content = """---
|
| 3 |
+
language: en
|
| 4 |
+
license: mit
|
| 5 |
+
tags:
|
| 6 |
+
- sentiment-analysis
|
| 7 |
+
- text-classification
|
| 8 |
+
- distilbert
|
| 9 |
+
datasets:
|
| 10 |
+
- imdb
|
| 11 |
+
metrics:
|
| 12 |
+
- accuracy
|
| 13 |
+
model-index:
|
| 14 |
+
- name: product-review-sentiment-analyzer
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
type: text-classification
|
| 18 |
+
name: Text Classification
|
| 19 |
+
dataset:
|
| 20 |
+
name: Yelp
|
| 21 |
+
type: Yelp
|
| 22 |
+
metrics:
|
| 23 |
+
- name: Accuracy
|
| 24 |
+
type: accuracy
|
| 25 |
+
value: 0.92 # Replace with your actual accuracy
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
# Product Review Sentiment Analyzer
|
| 29 |
|
| 30 |
+
This model classifies product reviews as positive, negative, or neutral. It was fine-tuned on the IMDB dataset using DistilBERT as the base model.
|
| 31 |
+
|
| 32 |
+
## Usage
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 36 |
+
import torch
|
| 37 |
+
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained("yourusername/product-review-sentiment-analyzer")
|
| 39 |
+
model = AutoModelForSequenceClassification.from_pretrained("arpitk/product-review-sentiment-analyzer")
|
| 40 |
+
|
| 41 |
+
text = "This product exceeded my expectations!"
|
| 42 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 43 |
+
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
outputs = model(**inputs)
|
| 46 |
+
|
| 47 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 48 |
+
prediction = torch.argmax(probabilities, dim=-1).item()
|
| 49 |
+
|
| 50 |
+
labels = ["Negative", "Positive", "Neutral"] # Adjust based on your model's output order
|
| 51 |
+
print(f"Sentiment: {labels[prediction]}")
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
This project demonstrates how to build and deploy a sentiment analysis model for product reviews using free resources.
|
| 55 |
|
| 56 |
## Project Overview
|