ArpitK commited on
Commit
3bb94e2
·
verified ·
1 Parent(s): 2a4a868

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md CHANGED
@@ -1,5 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Product Review Sentiment Analyzer
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  This project demonstrates how to build and deploy a sentiment analysis model for product reviews using free resources.
4
 
5
  ## Project Overview
 
1
+ # Create a README.md file with proper metadata
2
+ model_card_content = """---
3
+ language: en
4
+ license: mit
5
+ tags:
6
+ - sentiment-analysis
7
+ - text-classification
8
+ - distilbert
9
+ datasets:
10
+ - imdb
11
+ metrics:
12
+ - accuracy
13
+ model-index:
14
+ - name: product-review-sentiment-analyzer
15
+ results:
16
+ - task:
17
+ type: text-classification
18
+ name: Text Classification
19
+ dataset:
20
+ name: Yelp
21
+ type: Yelp
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.92 # Replace with your actual accuracy
26
+ ---
27
+
28
  # Product Review Sentiment Analyzer
29
 
30
+ This model classifies product reviews as positive, negative, or neutral. It was fine-tuned on the IMDB dataset using DistilBERT as the base model.
31
+
32
+ ## Usage
33
+
34
+ ```python
35
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
36
+ import torch
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained("yourusername/product-review-sentiment-analyzer")
39
+ model = AutoModelForSequenceClassification.from_pretrained("arpitk/product-review-sentiment-analyzer")
40
+
41
+ text = "This product exceeded my expectations!"
42
+ inputs = tokenizer(text, return_tensors="pt")
43
+
44
+ with torch.no_grad():
45
+ outputs = model(**inputs)
46
+
47
+ probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
48
+ prediction = torch.argmax(probabilities, dim=-1).item()
49
+
50
+ labels = ["Negative", "Positive", "Neutral"] # Adjust based on your model's output order
51
+ print(f"Sentiment: {labels[prediction]}")
52
+ ```
53
+
54
  This project demonstrates how to build and deploy a sentiment analysis model for product reviews using free resources.
55
 
56
  ## Project Overview