File size: 1,914 Bytes
d29e639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-384
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: segmented-augmented
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segmented-augmented

This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5815
- Precision: 0.8308
- Recall: 0.9136
- F1: 0.8703

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05

- train_batch_size: 16

- eval_batch_size: 16

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
| 0.081         | 1.0   | 327  | 0.3693          | 0.8464    | 0.8970 | 0.8710 |
| 0.0151        | 2.0   | 654  | 0.4906          | 0.8171    | 0.8904 | 0.8521 |
| 0.0066        | 3.0   | 981  | 0.5194          | 0.8416    | 0.9003 | 0.8700 |
| 0.0029        | 4.0   | 1308 | 0.5671          | 0.8308    | 0.9136 | 0.8703 |
| 0.0026        | 5.0   | 1635 | 0.5815          | 0.8308    | 0.9136 | 0.8703 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1