File size: 3,764 Bytes
1fcbc45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import glob\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "from PIL import Image\n",
    "from transformers import AutoModel\n",
    "from torchvision.transforms.functional import to_pil_image, pil_to_tensor\n",
    "from torchmetrics.classification import BinaryF1Score, BinaryAveragePrecision\n",
    "from tqdm.auto import tqdm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = AutoModel.from_pretrained(\"ductai199x/forensic-similarity-graph\", trust_remote_code=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "device = \"cuda\" if torch.cuda.is_available() else \"cpu\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = model.eval().to(device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "image_paths = sorted(glob.glob(\"example_images/splicing-??.png\"))\n",
    "gt_paths = sorted(glob.glob(\"example_images/splicing-??-gt.png\"))\n",
    "image_vs_gt_paths = list(zip(image_paths, gt_paths))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with torch.no_grad():\n",
    "    imgs = []\n",
    "    gts = []\n",
    "    img_preds = []\n",
    "    loc_preds = []\n",
    "    f1, mAP = BinaryF1Score(), BinaryAveragePrecision()\n",
    "    for image_path, gt_path in tqdm(image_vs_gt_paths):\n",
    "        image = pil_to_tensor(Image.open(image_path).convert(\"RGB\")).float() / 255\n",
    "        gt = ((pil_to_tensor(Image.open(gt_path).convert(\"L\")).float() / 255) < 0.9).int()\n",
    "        img_pred, loc_pred = model(image.unsqueeze(0).to(device))\n",
    "        img_pred, loc_pred = img_pred[0].cpu(), loc_pred[0].cpu()\n",
    "        f1.update(loc_pred[None, ...], gt)\n",
    "        mAP.update(loc_pred[None, ...], gt)\n",
    "        img_preds.append(img_pred)\n",
    "        loc_preds.append(loc_pred)\n",
    "        imgs.append(image)\n",
    "        gts.append(gt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "f1.compute().item(), mAP.compute().item()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "col = 4 * 2\n",
    "row = -(-len(image_vs_gt_paths) // 4)\n",
    "fig, axs = plt.subplots(row, col)\n",
    "fig.set_size_inches(3 * col, 3 * row)\n",
    "for i, (img, gt, img_pred, loc_pred) in enumerate(zip(imgs, gts, img_preds, loc_preds)):\n",
    "    ax = axs[i // 4][(i % 4) * 2]\n",
    "    ax.imshow(to_pil_image(img))\n",
    "    ax = axs[i // 4][(i % 4) * 2 + 1]\n",
    "    ax.imshow(to_pil_image(gt.float()))\n",
    "    ax.imshow(loc_pred, alpha=0.5, cmap=\"coolwarm\")\n",
    "\n",
    "for ax in axs.flat:\n",
    "    ax.axis(\"off\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "pyt_tf2",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.18"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}