File size: 1,834 Bytes
a7bf1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3142ac2
 
 
 
 
 
a7bf1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3142ac2
a7bf1a4
 
 
 
 
3142ac2
 
 
 
a7bf1a4
 
 
 
 
3142ac2
a7bf1a4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-small-tigger
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-small-tigger

This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1738
- Rouge1: 17.6332
- Rouge2: 10.2475
- Rougel: 17.5233
- Rougelsum: 17.5252
- Gen Len: 16.59

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.469         | 1.0   | 1800 | 2.2623          | 19.2526 | 13.4607 | 19.2285 | 19.2089   | 10.9481 |
| 2.3176        | 2.0   | 3600 | 2.2014          | 17.1109 | 10.2435 | 17.0312 | 17.0412   | 15.6308 |
| 2.264         | 3.0   | 5400 | 2.1789          | 17.5631 | 10.4188 | 17.428  | 17.4439   | 16.7186 |
| 2.231         | 4.0   | 7200 | 2.1738          | 17.6332 | 10.2475 | 17.5233 | 17.5252   | 16.59   |


### Framework versions

- Transformers 4.29.1
- Pytorch 2.0.0
- Datasets 2.12.0
- Tokenizers 0.13.3