a2c-AntBulletEnv-v0 / config.json
dreamboat26's picture
Initial commit
fcda788
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c31aafca200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c31aafca290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c31aafca320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c31aafca3b0>", "_build": "<function ActorCriticPolicy._build at 0x7c31aafca440>", "forward": "<function ActorCriticPolicy.forward at 0x7c31aafca4d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c31aafca560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c31aafca5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c31aafca680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c31aafca710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c31aafca7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c31aafca830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c31aafcc540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1097592, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691166071863836576, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK3hCL9MXlS9P8sWPz4PbT+flgw+bBhRPlTD6bt1C76+Jic5P0m1M71g2E093I8YPtB0QL+UowDAblwsP+qYMj0dzCC+Et6ev1D0/T477ns/+AQfvzSDbDewjFa/FTfuu74daz/PCv6/9xQeP/pair+e16+/Ua0TQIWaaMBdUKy/hQOHOeiezT1ndny+4LelPlbT0r/bIRA9Bt0Cv3VpRL2FfRdAIzYDvcAvWz8NNvw8wfmZP5S0h7ukJJI+tA+rvSlKOED2WZc9vlm+vntAcTy+HWs/hvwAP/cUHj/g1mw/HBsHPxKq/D/1C8C/JGkOP+B5Db5BooS/C4Y7v0g/or/LNRU+ZjjQPvnXNj5toOa/ShYbv3IVbD+CY1k/1pzMO+s94r4aXbQ/+ACpPQuObL+BSBO+NoA5P98zaz32uP0/kF6Lv4b8AD/3FB4/+lqKv5V1i753ioo/+F/uPVbVfD/Z3dG+xcqYv1z04T5KlEC+ss6zPvz6mT9m/dI+qPp+v01Ujb/oaFI/ZOHTvAXvRL9KZhC/f+jwPjtpKz/nM5i+6Qifvsh4iT+D2hq/AHYgP74daz/PCv6/9xQeP/pair+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABGRpQ0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwZravQAAAABqCPC/AAAAAHCdB74AAAAAuCH2PwAAAADscGU9AAAAAHdn6z8AAAAA0+vhPAAAAACrwOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5jc5tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCJwhD0AAAAA9avtvwAAAAAu1dG9AAAAAOQ/4T8AAAAAytH7PQAAAACGX/0/AAAAADowkT0AAAAA04LdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMzNWTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICOtBC+AAAAAIdZ5b8AAAAAMPuFvQAAAAAn5Pc/AAAAAGlVAT4AAAAAowfqPwAAAABNrIE9AAAAAGC5/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOOdg1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApHQMvgAAAAD+3++/AAAAAOktq70AAAAAOSrgPwAAAADk2P49AAAAACTo7z8AAAAASIbbPQAAAADa2Ni/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.45121599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJljdSOzY2+MAWyUTegDjAF0lEdAnX36JIlMRHV9lChoBkdAnBF2qT8pC2gHTegDaAhHQJ1/uYAsCkp1fZQoaAZHQJb0jwG4ZuRoB03oA2gIR0CdieV6u4gBdX2UKGgGR0CbypBxgiNbaAdN6ANoCEdAnZE6MrEtNHV9lChoBkdAl40OERJ2+2gHTegDaAhHQJ2eK1JDmbN1fZQoaAZHQJu2Sbc45tFoB03oA2gIR0CdoJHVf/m1dX2UKGgGR0Ca4ffmcOLBaAdN6ANoCEdAnaq/qcEvCnV9lChoBkdAmlrsa4tpVWgHTegDaAhHQJ2x9vsJIDp1fZQoaAZHQJUvirilzltoB03oA2gIR0Cduk4DLbHqdX2UKGgGR0Cciq45cTrWaAdN6ANoCEdAnbwMWoFV1nV9lChoBkdAnDrw/xDst2gHTegDaAhHQJ3GHQE6kqN1fZQoaAZHQJiabFQ2uPpoB03oA2gIR0Cd0DtNBWxRdX2UKGgGR0CbE9+6y0KJaAdN6ANoCEdAndttOIqLCXV9lChoBkdAm8hRL0z0pWgHTegDaAhHQJ3dLOu7pV11fZQoaAZHQJnqYhzNliBoB03oA2gIR0Cd5xXBxgiNdX2UKGgGR0CbgubWEsasaAdN6ANoCEdAne5LcKw6hnV9lChoBkdAncF5xaPjn2gHTegDaAhHQJ32g1rIo3J1fZQoaAZHQJ/fZ7LMcIZoB03oA2gIR0Cd+DHn2ZiNdX2UKGgGR0CczMJrLyMDaAdN6ANoCEdAngPv+0gKW3V9lChoBkdAmsMFYEGJN2gHTegDaAhHQJ4O5bor4Fl1fZQoaAZHQJx/befqX4VoB03oA2gIR0CeFxmQKa5PdX2UKGgGR0Ca7bcEeQuFaAdN6ANoCEdAnhjKTB68hHV9lChoBkdAnqg9yo4uLGgHTegDaAhHQJ4imS5iExt1fZQoaAZHQJoUdU5uIh1oB03oA2gIR0CeKcVyWAwxdX2UKGgGR0Cd2V++M6zWaAdN6ANoCEdAnjSKa1Cw8nV9lChoBkdAnpj+yeI2wWgHTegDaAhHQJ43RKmKqGV1fZQoaAZHQJxmqrfcesBoB03oA2gIR0CeSCCE6DGtdX2UKGgGR0CeZ3emvW6LaAdN6ANoCEdAnlCyeZof0XV9lChoBkdAmsCNRJmNBGgHTegDaAhHQJ5Y/WNFSbZ1fZQoaAZHQJ28v5eqrBFoB03oA2gIR0CeWrLZBcAzdX2UKGgGR0CdjfkAggX/aAdN6ANoCEdAnmTUq6OHWXV9lChoBkdAnxKHDJlrdmgHTegDaAhHQJ5r9FG5MDh1fZQoaAZHQJ4A6KvV3EBoB03oA2gIR0CedJqXWvr4dX2UKGgGR0CcARHbRF7VaAdN6ANoCEdAnnc/xtpEhXV9lChoBkdAmpbKCDmKZWgHTegDaAhHQJ6FdyNn5BV1fZQoaAZHQJvwuBqbjLloB03oA2gIR0CejLAu7HyVdX2UKGgGR0CdIfHG0eEJaAdN6ANoCEdAnpUT7l7tzHV9lChoBkdAm5b1SCOFQGgHTegDaAhHQJ6Wztw71Zl1fZQoaAZHQJ23uBXjlxRoB03oA2gIR0CeoQf1HvtudX2UKGgGR0Cb+s1anrIHaAdN6ANoCEdAnqhqgRK6F3V9lChoBkdAni3ngtOEd2gHTegDaAhHQJ60AOH31z11fZQoaAZHQJ0a6QeV9ndoB03oA2gIR0CetstpEhJRdX2UKGgGR0CbYCQqqfe2aAdN6ANoCEdAnsJDIvJzUHV9lChoBkdAnahW3rleW2gHTegDaAhHQJ7JhbdJrcl1fZQoaAZHQJhnQGlhw2loB03oA2gIR0Ce0g1dxAB1dX2UKGgGR0CdqOxDLKV6aAdN6ANoCEdAntPN3GGVRnV9lChoBkdAnIubWuoxYmgHTegDaAhHQJ7eLu7YkE91fZQoaAZHQJwIS7SRbKRoB03oA2gIR0Ce51QXAM2FdX2UKGgGR0CdTDYvFm4BaAdN6ANoCEdAnvOwieNDMXV9lChoBkdAnBPuA7Ppp2gHTegDaAhHQJ71aEUTL4h1fZQoaAZHQJ1VuiwjdHloB03oA2gIR0Ce/4lj3EhrdX2UKGgGR0CYMu0YCQtBaAdN6ANoCEdAnwbhacI7eXV9lChoBkdAmCzTT8YQ8WgHTegDaAhHQJ8PbUNKAax1fZQoaAZHQJizLU1AJLNoB03oA2gIR0CfER0tyxRmdX2UKGgGR0CdUEv73wkPaAdN6ANoCEdAnxu7/Khcq3V9lChoBkdAmtfAA+6iCmgHTegDaAhHQJ8m38qFyrB1fZQoaAZHQJyFpN5+pfhoB03oA2gIR0CfME8fFJg9dX2UKGgGR0Cbu2ROUMXraAdN6ANoCEdAnzIHTy8SPHV9lChoBkdAnDVRrzoUz2gHTegDaAhHQJ88Qjlgc951fZQoaAZHQJnLtlYlpoNoB03oA2gIR0CfQ4WfbsWwdX2UKGgGR0CeQm+t8uzyaAdN6ANoCEdAn0vhczImxHV9lChoBkdAn2qRHPNVzmgHTegDaAhHQJ9NkUL2HtZ1fZQoaAZHQJ7fAb1h9b5oB03oA2gIR0CfW0KR+z+ndX2UKGgGR0CedH7j1f3OaAdN6ANoCEdAn2S6aCtihHV9lChoBkdAndD8WXTmXGgHTegDaAhHQJ9tGzHCGet1fZQoaAZHQJ3kHuTibUhoB03oA2gIR0Cfbrj2Bas7dX2UKGgGR0CbzHWYnfEXaAdN6ANoCEdAn3iNbor4FnV9lChoBkdAnt406YE4emgHTegDaAhHQJ9/qkWRA8l1fZQoaAZHQJw8tH4GlhxoB03oA2gIR0Cfh8uq3mV8dX2UKGgGR0CdKbguRLbpaAdN6ANoCEdAn4nLtzCDVnV9lChoBkdAna5t2Pkq+mgHTegDaAhHQJ+Y7TOPeYV1fZQoaAZHQJ4+9sabWmRoB03oA2gIR0Cfn+fqHGjsdX2UKGgGR0CaEyjbzshQaAdN6ANoCEdAn6f2WdEsrnV9lChoBkdAnGtIMOPNmmgHTegDaAhHQJ+pkqNIbwV1fZQoaAZHQJnoZXnyNGVoB03oA2gIR0Cfs1WrfcesdX2UKGgGR0CbVZnmJWNnaAdN6ANoCEdAn7psWfseGXV9lChoBkdAm1npPZZjhGgHTegDaAhHQJ/D+MvRJEp1fZQoaAZHQJpDlCAtnPFoB03oA2gIR0Cfxov5P/JedX2UKGgGR0Cc745M10koaAdN6ANoCEdAn9QFOfukUXV9lChoBkdAngDdTkyULWgHTegDaAhHQJ/bC3MINVl1fZQoaAZHQJ9n04LkS29oB03oA2gIR0Cf41hpxm03dX2UKGgGR0Cc5wshPj4paAdN6ANoCEdAn+UPLDAJs3V9lChoBkdAncnjxLCemWgHTegDaAhHQJ/vLD+BH091fZQoaAZHQJxyUPvrnkloB03oA2gIR0Cf9leo1k1/dX2UKGgGR0Cc4aBeokzHaAdN6ANoCEdAoAFH7xd6cHV9lChoBkdAnGNFX7tRemgHTegDaAhHQKACqK4QSSN1fZQoaAZHQJ06Rz7uUlloB03oA2gIR0CgB/7u2JBPdX2UKGgGR0Ca1WrOJLuhaAdN6ANoCEdAoAuRc9nscHV9lChoBkdAmPn9sabWmWgHTegDaAhHQKAPqjUutfZ1fZQoaAZHQJ00fL5hz/9oB03oA2gIR0CgEH56Uqx1dX2UKGgGR0CXCg+Q2dd3aAdN6ANoCEdAoBWHMdLg43V9lChoBkdAl++jundfs2gHTegDaAhHQKAZ+RDCxeN1fZQoaAZHQJbF6QLeANJoB03oA2gIR0CgH/1SwW30dX2UKGgGR0CK/GF0PpY+aAdN6ANoCEdAoCDPTEzfrXV9lChoBkdAl2JwNoakymgHTegDaAhHQKAlwUD+zdF1fZQoaAZHQJYLvVH4GlhoB03oA2gIR0CgKVfqgRK6dX2UKGgGR0CXV+G6PKdQaAdN6ANoCEdAoC2aj8DSxHV9lChoBkdAlRa7EpAlfWgHTegDaAhHQKAudhoduHh1fZQoaAZHQJWrHs9jgAJoB03oA2gIR0CgM6nYYixFdX2UKGgGR0CUE0DWsijdaAdN6ANoCEdAoDkeOsDGLnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 34299, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}