--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: modernbert-acceptance-classifier-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modernbert-acceptance-classifier-final This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6494 - F1: 0.8156 - Precision: 0.8160 - Recall: 0.8157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.2448932804037876e-05 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.17030843157226483 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | 0.4105 | 1.0 | 1609 | 0.3929 | 0.8180 | 0.8180 | 0.8180 | | 0.375 | 2.0 | 3218 | 0.4030 | 0.8222 | 0.8262 | 0.8229 | | 0.185 | 3.0 | 4827 | 0.6494 | 0.8156 | 0.8160 | 0.8157 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.2.2 - Datasets 3.1.0 - Tokenizers 0.21.0