dragonkue commited on
Commit
eda28d9
·
verified ·
1 Parent(s): c21b6c1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -2
README.md CHANGED
@@ -129,7 +129,7 @@ model-index:
129
  value: 0.7694903427297795
130
  name: Cosine Recall@10
131
  - type: cosine_ndcg@10
132
- value: 0.6723275985412543
133
  name: Cosine Ndcg@10
134
  - type: cosine_mrr@10
135
  value: 0.7262426410313736
@@ -187,6 +187,10 @@ base_model:
187
  - BAAI/bge-m3
188
  ---
189
 
 
 
 
 
190
  # SentenceTransformer
191
 
192
  This is a [sentence-transformers](https://www.SBERT.net) model trained on the train_set dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
@@ -401,7 +405,7 @@ This is a benchmark of Korean embedding models.
401
  | cosine_recall@3 | 0.5902 |
402
  | cosine_recall@5 | 0.6794 |
403
  | cosine_recall@10 | 0.7695 |
404
- | **cosine_ndcg@10** | **0.6723** |
405
  | cosine_mrr@10 | 0.7262 |
406
  | cosine_map@100 | 0.6074 |
407
  | dot_accuracy@1 | 0.6103 |
 
129
  value: 0.7694903427297795
130
  name: Cosine Recall@10
131
  - type: cosine_ndcg@10
132
+ value: 0.6833112035481234
133
  name: Cosine Ndcg@10
134
  - type: cosine_mrr@10
135
  value: 0.7262426410313736
 
187
  - BAAI/bge-m3
188
  ---
189
 
190
+
191
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/642b0c2fecec03b4464a1d9b/IxcqY5qbGNuGpqDciIcOI.webp" width="600">
192
+
193
+
194
  # SentenceTransformer
195
 
196
  This is a [sentence-transformers](https://www.SBERT.net) model trained on the train_set dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
 
405
  | cosine_recall@3 | 0.5902 |
406
  | cosine_recall@5 | 0.6794 |
407
  | cosine_recall@10 | 0.7695 |
408
+ | **cosine_ndcg@10** | **0.6833** |
409
  | cosine_mrr@10 | 0.7262 |
410
  | cosine_map@100 | 0.6074 |
411
  | dot_accuracy@1 | 0.6103 |