Commit
·
3f6d0f8
1
Parent(s):
f3a8e1e
update model card README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,74 @@
|
|
1 |
---
|
2 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: toxic-comment-classification
|
12 |
+
results: []
|
13 |
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# toxic-comment-classification
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.5590
|
23 |
+
- Accuracy: 0.8578
|
24 |
+
- F1: 0.8580
|
25 |
+
- Precision: 0.8594
|
26 |
+
- Recall: 0.8578
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 3.255788747459486e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 1993
|
49 |
+
- optimizer: Adam with betas=(0.8445637934160373,0.8338816842140165) and epsilon=2.527092625455385e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 30
|
52 |
+
- label_smoothing_factor: 0.07158711257743958
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
58 |
+
| 0.4422 | 1.0 | 1408 | 0.4197 | 0.8466 | 0.8470 | 0.8505 | 0.8466 |
|
59 |
+
| 0.3566 | 2.0 | 2816 | 0.4724 | 0.8413 | 0.8394 | 0.8453 | 0.8413 |
|
60 |
+
| 0.3135 | 3.0 | 4224 | 0.4801 | 0.8447 | 0.8434 | 0.8470 | 0.8447 |
|
61 |
+
| 0.2638 | 4.0 | 5632 | 0.5590 | 0.8578 | 0.8580 | 0.8594 | 0.8578 |
|
62 |
+
| 0.2314 | 5.0 | 7040 | 0.5605 | 0.8491 | 0.8487 | 0.8489 | 0.8491 |
|
63 |
+
| 0.2221 | 6.0 | 8448 | 0.6369 | 0.8416 | 0.8414 | 0.8414 | 0.8416 |
|
64 |
+
| 0.1939 | 7.0 | 9856 | 0.6518 | 0.8400 | 0.8402 | 0.8405 | 0.8400 |
|
65 |
+
| 0.2015 | 8.0 | 11264 | 0.6042 | 0.8462 | 0.8457 | 0.8465 | 0.8462 |
|
66 |
+
| 0.1989 | 9.0 | 12672 | 0.6236 | 0.8500 | 0.8496 | 0.8499 | 0.8500 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.26.0
|
72 |
+
- Pytorch 1.10.2+cu113
|
73 |
+
- Datasets 2.9.0
|
74 |
+
- Tokenizers 0.13.2
|