initial commit
Browse files- README.md +28 -0
- config.json +30 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
This model repository presents "TinySapBERT", a tiny-sized SapBERT model trained using [official SapBERT code and instructions (Liu et al., NAACL 2021)](https://github.com/cambridgeltl/sapbert).
|
2 |
+
We used our [TinyPubMedBERT](https://huggingface.co/dmis-lab/TinyPubMedBERT-v1.0), a tiny-sized LM, as an initial starting point to train using the SapBERT scheme.
|
3 |
+
<br>
|
4 |
+
cf) TinyPubMedBERT is a distillated [PubMedBERT (Gu et al., 2021)](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract), open-sourced along with the release of the KAZU (Korea University and AstraZeneca) framework.
|
5 |
+
|
6 |
+
* For details, please visit [KAZU framework](https://github.com/AstraZeneca/KAZU) or see our paper entitled **Biomedical NER for the Enterprise with Distillated BERN2 and the Kazu Framework**, (EMNLP 2022 industry track).
|
7 |
+
|
8 |
+
|
9 |
+
### Citation info
|
10 |
+
Joint-first authorship of **Richard Jackson** (AstraZeneca) and **WonJin Yoon** (Korea University).
|
11 |
+
<br>Please cite: (Full citation info will be announced soon)
|
12 |
+
```
|
13 |
+
@inproceedings{YoonAndJackson2022BiomedicalNER,
|
14 |
+
title={Biomedical NER for the Enterprise with Distillated BERN2 and the Kazu Framework},
|
15 |
+
author={Wonjin Yoon, Richard Jackson, Elliot Ford, Vladimir Poroshin, Jaewoo Kang},
|
16 |
+
booktitle={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
|
17 |
+
year={2022}
|
18 |
+
}
|
19 |
+
```
|
20 |
+
|
21 |
+
The model used resources of [SapBERT paper](https://aclanthology.org/2021.naacl-main.334.pdf). We appreciate the authors for making the resources publicly available!
|
22 |
+
```
|
23 |
+
Liu, Fangyu, et al. "Self-Alignment Pretraining for Biomedical Entity Representations."
|
24 |
+
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
|
25 |
+
```
|
26 |
+
|
27 |
+
### Contact Information
|
28 |
+
For help or issues using the codes or model (NER module of KAZU) in this repository, please contact WonJin Yoon (wonjin.info (at) gmail.com) or submit a GitHub issue.
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/hdd2/wonjin/SapBERT-data/ckpt/TinyPubMedBERT-epoch3-41k",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"cell": {},
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"emb_size": 312,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 312,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 1200,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"max_position_embeddings": 512,
|
17 |
+
"model_type": "bert",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 4,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"pre_trained": "",
|
23 |
+
"structure": [],
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"training": "",
|
26 |
+
"transformers_version": "4.12.5",
|
27 |
+
"type_vocab_size": 2,
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 30522
|
30 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1c575360ee941a6996407024ab9a8de3131adb4f31e3da3addb5f6731da0e64
|
3 |
+
size 57431373
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "do_basic_tokenize": true, "never_split": null, "special_tokens_map_file": null, "name_or_path": "/hdd2/wonjin/SapBERT-data/ckpt/TinyPubMedBERT-epoch3-41k", "tokenizer_class": "BertTokenizer"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|