Update README.md
Browse files
README.md
CHANGED
@@ -26,12 +26,25 @@ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
29 |
-
TODO: Add your code
|
30 |
|
31 |
|
32 |
```python
|
33 |
-
|
|
|
|
|
34 |
from huggingface_sb3 import load_from_hub
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
```
|
|
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
|
|
29 |
|
30 |
|
31 |
```python
|
32 |
+
import gym
|
33 |
+
|
34 |
+
from stable_baselines3 import A2C
|
35 |
from huggingface_sb3 import load_from_hub
|
36 |
|
37 |
+
checkpoint = load_from_hub(
|
38 |
+
repo_id="AntBulletEnv-v0",
|
39 |
+
filename="a2c-AntBulletEnv-v0.zip",
|
40 |
+
)
|
41 |
+
model = A2C.load(checkpoint)
|
42 |
+
|
43 |
+
# Evaluate the agent and watch it
|
44 |
+
eval_env = gym.make("AntBulletEnv-v0")
|
45 |
+
mean_reward, std_reward = evaluate_policy(
|
46 |
+
model, eval_env, render=True, n_eval_episodes=5, deterministic=True, warn=False
|
47 |
+
)
|
48 |
+
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
|
49 |
+
|
50 |
```
|