import math import numpy as np import torch from torch.nn import functional as F def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) def intersperse(lst, item): # needed for inference result = [item] * (len(lst) * 2 + 1) result[1::2] = lst return result def kl_divergence(m_p, logs_p, m_q, logs_q): """KL(P||Q)""" kl = (logs_q - logs_p) - 0.5 kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q) return kl def rand_gumbel(shape): """Sample from the Gumbel distribution, protect from overflows.""" uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 return -torch.log(-torch.log(uniform_samples)) @torch.jit.script def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts def convert_pad_shape(pad_shape): l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def sequence_mask(length, max_length=None): if max_length is None: max_length = length.max() x = torch.arange(max_length, dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) def generate_path(duration, mask): """ duration: [b, 1, t_x] mask: [b, 1, t_y, t_x] """ device = duration.device b, _, t_y, t_x = mask.shape cum_duration = torch.cumsum(duration, -1) cum_duration_flat = cum_duration.view(b * t_x) path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) path = path.view(b, t_x, t_y) path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] path = path.unsqueeze(1).transpose(2,3) * mask return path