beta 16kHz
Browse files- Modules/hifigan.py +5 -5
- Utils/text_utils.py +1 -1
- api.py +134 -51
- models.py +3 -3
- msinference.py +27 -23
Modules/hifigan.py
CHANGED
@@ -122,14 +122,14 @@ class SineGen(torch.nn.Module):
|
|
122 |
|
123 |
rad_values = (f0_values / self.sampling_rate) % 1 # -21 % 10 = 9 as -3*10 + 9 = 21 NOTICE THAT LCM IS SIGNED HENCE not POSITIVE integer
|
124 |
|
125 |
-
|
126 |
|
127 |
|
128 |
|
129 |
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
130 |
scale_factor=1/self.upsample_scale,
|
131 |
mode="linear").transpose(1, 2)
|
132 |
-
|
133 |
phase = torch.cumsum(rad_values, dim=1) * 1.84 * np.pi # 1.89 sounds also nice has woofer at punctuation
|
134 |
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
135 |
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
@@ -215,7 +215,7 @@ class Generator(torch.nn.Module):
|
|
215 |
|
216 |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 484]) GENERAT 249
|
217 |
f0 = self.f0_upsamp(f0).transpose(1, 2)
|
218 |
-
|
219 |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 145200, 1]) GENERAT 253
|
220 |
|
221 |
har_source = self.m_source(f0) # [1, 145400, 1] f0 enters already upsampled to full wav 24kHz length
|
@@ -229,7 +229,7 @@ class Generator(torch.nn.Module):
|
|
229 |
x_source = self.noise_res[i](x_source, s)
|
230 |
|
231 |
x = self.ups[i](x)
|
232 |
-
print(x.min(), x.max(), x_source.min(), x_source.max())
|
233 |
x = x + x_source
|
234 |
|
235 |
xs = None
|
@@ -351,7 +351,7 @@ class Decoder(nn.Module):
|
|
351 |
N = self.N_conv(N)
|
352 |
|
353 |
|
354 |
-
print(asr.shape, F0.shape, N.shape, 'TF')
|
355 |
|
356 |
|
357 |
x = torch.cat([asr, F0, N], axis=1)
|
|
|
122 |
|
123 |
rad_values = (f0_values / self.sampling_rate) % 1 # -21 % 10 = 9 as -3*10 + 9 = 21 NOTICE THAT LCM IS SIGNED HENCE not POSITIVE integer
|
124 |
|
125 |
+
|
126 |
|
127 |
|
128 |
|
129 |
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
130 |
scale_factor=1/self.upsample_scale,
|
131 |
mode="linear").transpose(1, 2)
|
132 |
+
|
133 |
phase = torch.cumsum(rad_values, dim=1) * 1.84 * np.pi # 1.89 sounds also nice has woofer at punctuation
|
134 |
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
135 |
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
|
|
215 |
|
216 |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 484]) GENERAT 249
|
217 |
f0 = self.f0_upsamp(f0).transpose(1, 2)
|
218 |
+
|
219 |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 145200, 1]) GENERAT 253
|
220 |
|
221 |
har_source = self.m_source(f0) # [1, 145400, 1] f0 enters already upsampled to full wav 24kHz length
|
|
|
229 |
x_source = self.noise_res[i](x_source, s)
|
230 |
|
231 |
x = self.ups[i](x)
|
232 |
+
# print(x.min(), x.max(), x_source.min(), x_source.max())
|
233 |
x = x + x_source
|
234 |
|
235 |
xs = None
|
|
|
351 |
N = self.N_conv(N)
|
352 |
|
353 |
|
354 |
+
# print(asr.shape, F0.shape, N.shape, 'TF')
|
355 |
|
356 |
|
357 |
x = torch.cat([asr, F0, N], axis=1)
|
Utils/text_utils.py
CHANGED
@@ -85,7 +85,7 @@ def split_into_sentences(text):
|
|
85 |
|
86 |
# Split Very long sentences >500 phoneme - StyleTTS2 crashes
|
87 |
# -- even 400 phonemes sometimes OOM in cuda:4
|
88 |
-
sentences = [sub_sent+' ' for s in sentences for sub_sent in textwrap.wrap(s,
|
89 |
|
90 |
# if sentences and not sentences[-1]:
|
91 |
# sentences = sentences[:-1]
|
|
|
85 |
|
86 |
# Split Very long sentences >500 phoneme - StyleTTS2 crashes
|
87 |
# -- even 400 phonemes sometimes OOM in cuda:4
|
88 |
+
sentences = [sub_sent+' ' for s in sentences for sub_sent in textwrap.wrap(s, 200, break_long_words=0)]
|
89 |
|
90 |
# if sentences and not sentences[-1]:
|
91 |
# sentences = sentences[:-1]
|
api.py
CHANGED
@@ -6,6 +6,7 @@ from Utils.text_utils import split_into_sentences
|
|
6 |
import msinference
|
7 |
import re
|
8 |
import srt
|
|
|
9 |
import subprocess
|
10 |
import cv2
|
11 |
from pathlib import Path
|
@@ -20,6 +21,54 @@ sound_generator = AudioGen().to('cuda:0').eval() # duration chosen in generate(
|
|
20 |
|
21 |
Path(CACHE_DIR).mkdir(parents=True, exist_ok=True)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def _shorten(filename):
|
24 |
return filename.replace("/","")[-6:]
|
25 |
|
@@ -57,15 +106,19 @@ def _resize(image, width=None, height=None, inter=cv2.INTER_AREA):
|
|
57 |
|
58 |
def overlay(x,soundscape=None):
|
59 |
if soundscape is not None:
|
|
|
60 |
background = sound_generator.generate(soundscape,
|
61 |
-
duration=len(x)/
|
62 |
).detach().cpu().numpy() # bs, 11400 @.74s
|
63 |
-
|
64 |
-
#
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
def tts_multi_sentence(precomputed_style_vector=None,
|
@@ -87,6 +140,8 @@ def tts_multi_sentence(precomputed_style_vector=None,
|
|
87 |
|
88 |
if precomputed_style_vector is not None:
|
89 |
x = []
|
|
|
|
|
90 |
for _sentence in text:
|
91 |
|
92 |
# StyleTTS2 - pronounciation Fx
|
@@ -96,7 +151,7 @@ def tts_multi_sentence(precomputed_style_vector=None,
|
|
96 |
# fix sounding of sleepy AAABS TRAACT
|
97 |
_sentence = _sentence.replace('abstract', 'ahbstract') # 'ahstract'
|
98 |
x.append(msinference.inference(_sentence,
|
99 |
-
|
100 |
)
|
101 |
x = np.concatenate(x)
|
102 |
|
@@ -104,7 +159,7 @@ def tts_multi_sentence(precomputed_style_vector=None,
|
|
104 |
|
105 |
else:
|
106 |
|
107 |
-
# dont split foreign sentences: Avoids
|
108 |
x = msinference.foreign(text=text,
|
109 |
lang=voice, # voice = 'romanian', 'serbian' 'hungarian'
|
110 |
speed=speed) # normalisation externally
|
@@ -164,7 +219,7 @@ def serve_wav():
|
|
164 |
text = [[j.content, j.start.total_seconds(), j.end.total_seconds()] for j in srt.parse(s)]
|
165 |
assert args.video is not None
|
166 |
native_audio_file = '_tmp.wav'
|
167 |
-
subprocess.
|
168 |
["ffmpeg",
|
169 |
"-y", # https://stackoverflow.com/questions/39788972/ffmpeg-overwrite-output-file-if-exists
|
170 |
"-i",
|
@@ -172,20 +227,22 @@ def serve_wav():
|
|
172 |
"-f",
|
173 |
"mp3",
|
174 |
"-ar",
|
175 |
-
"
|
176 |
"-vn",
|
177 |
native_audio_file])
|
178 |
x_native, _ = soundfile.read(native_audio_file) # reads mp3
|
179 |
-
|
|
|
|
|
|
|
|
|
180 |
# ffmpeg -i Sandra\ Kotevska\,\ Painting\ Rose\ bush\,\ mixed\ media\,\ 2017.\ \[NMzC_036MtE\].mkv -f mp3 -ar 22050 -vn out44.wa
|
181 |
else:
|
182 |
with open(args.text, 'r') as f:
|
183 |
-
|
184 |
-
|
185 |
-
# -- sub all punctuation with ' '
|
186 |
-
text = split_into_sentences(t) # split to short sentences (~100 phonemes max for OOM)
|
187 |
|
188 |
-
#
|
189 |
|
190 |
precomputed_style_vector = None
|
191 |
|
@@ -199,15 +256,13 @@ def serve_wav():
|
|
199 |
native_audio_file += '__native_audio_track.wav'
|
200 |
soundfile.write('tgt_spk.wav',
|
201 |
np.concatenate([
|
202 |
-
x_native[:int(4 *
|
203 |
precomputed_style_vector = msinference.compute_style('tgt_spk.wav')
|
204 |
|
205 |
-
# NOTE: style vector
|
206 |
|
207 |
-
# Native
|
208 |
-
|
209 |
if precomputed_style_vector is None:
|
210 |
-
|
211 |
if 'en_US' in args.voice or 'en_UK' in args.voice:
|
212 |
_dir = '/' if args.affective else '_v2/'
|
213 |
precomputed_style_vector = msinference.compute_style(
|
@@ -216,23 +271,20 @@ def serve_wav():
|
|
216 |
'#', '_').replace(
|
217 |
'cmu-arctic', 'cmu_arctic').replace(
|
218 |
'_low', '') + '.wav')
|
219 |
-
|
220 |
-
# Non-Native Eng
|
221 |
-
|
222 |
elif '_' in args.voice:
|
223 |
precomputed_style_vector = msinference.compute_style('assets/wavs/mimic3_foreign_4x/' + args.voice.replace(
|
224 |
'/', '_').replace('#', '_').replace(
|
225 |
'cmu-arctic', 'cmu_arctic').replace(
|
226 |
'_low', '') + '.wav')
|
227 |
-
|
228 |
-
|
229 |
-
# Foreign Lang - MMS/TTS
|
230 |
else:
|
231 |
print(f'\n\n\n\n\n FallBack to MMS TTS due to: {args.voice=}')
|
232 |
|
233 |
|
234 |
-
# precomputed_style_vector is None
|
235 |
-
|
|
|
236 |
|
237 |
if args.video is not None:
|
238 |
# banner - precomput @ 1920 pixels
|
@@ -304,14 +356,17 @@ def serve_wav():
|
|
304 |
im = np.copy(get_frame(t)) # pic
|
305 |
|
306 |
|
307 |
-
ix = int(t *
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
313 |
else:
|
314 |
-
frame =
|
315 |
|
316 |
# im[-h:, -w:, :] = (.4 * im[-h:, -w:, :] + .6 * frame_orig).astype(np.uint8)
|
317 |
|
@@ -352,16 +407,13 @@ def serve_wav():
|
|
352 |
if do_video_dub:
|
353 |
OUT_FILE = 'tmp.mp4' #args.out_file + '_video_dub.mp4'
|
354 |
subtitles = text
|
355 |
-
MAX_LEN = int(subtitles[-1][2] + 17) *
|
356 |
# 17 extra seconds fail-safe for long-last-segment
|
357 |
print("TOTAL LEN SAMPLES ", MAX_LEN, '\n====================')
|
358 |
pieces = []
|
359 |
for k, (_text_, orig_start, orig_end) in enumerate(subtitles):
|
360 |
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
pieces.append(tts_multi_sentence(text=[_text_],
|
365 |
precomputed_style_vector=precomputed_style_vector,
|
366 |
voice=args.voice,
|
367 |
soundscape=args.soundscape,
|
@@ -379,7 +431,7 @@ def serve_wav():
|
|
379 |
soundfile.write(AUDIO_TRACK,
|
380 |
# (is_tts * total + (1-is_tts) * x_native)[:, None],
|
381 |
(.64 * total + .27 * x_native)[:, None],
|
382 |
-
|
383 |
else: # Video from plain (.txt)
|
384 |
OUT_FILE = 'tmp.mp4'
|
385 |
x = tts_multi_sentence(text=text,
|
@@ -387,13 +439,20 @@ def serve_wav():
|
|
387 |
voice=args.voice,
|
388 |
soundscape=args.soundscape,
|
389 |
speed=args.speed)
|
390 |
-
soundfile.write(AUDIO_TRACK, x,
|
391 |
|
392 |
# IMAGE 2 SPEECH
|
393 |
|
394 |
if args.image is not None:
|
395 |
-
|
396 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
OUT_FILE = 'tmp.mp4' #args.out_file + '_image_to_speech.mp4'
|
398 |
|
399 |
# SILENT CLIP
|
@@ -408,10 +467,10 @@ def serve_wav():
|
|
408 |
soundscape=args.soundscape,
|
409 |
speed=args.speed
|
410 |
)
|
411 |
-
soundfile.write(AUDIO_TRACK, x,
|
412 |
if args.video or args.image:
|
413 |
# write final output video
|
414 |
-
subprocess.
|
415 |
["ffmpeg",
|
416 |
"-y",
|
417 |
"-i",
|
@@ -437,7 +496,7 @@ def serve_wav():
|
|
437 |
soundscape=args.soundscape,
|
438 |
speed=args.speed)
|
439 |
OUT_FILE = 'tmp.wav'
|
440 |
-
soundfile.write(CACHE_DIR + OUT_FILE, x,
|
441 |
|
442 |
|
443 |
|
@@ -451,7 +510,7 @@ def serve_wav():
|
|
451 |
# response.headers["Content-Type"] = "audio/wav"
|
452 |
# https://stackoverflow.com/questions/67591467/
|
453 |
# flask-shows-typeerror-send-from-directory-missing-1-required-positional-argum
|
454 |
-
|
455 |
|
456 |
|
457 |
# send server's output as default file -> srv_result.xx
|
@@ -461,6 +520,30 @@ def serve_wav():
|
|
461 |
print('________________\n ? \n_______________')
|
462 |
return response
|
463 |
|
464 |
-
|
465 |
if __name__ == "__main__":
|
466 |
app.run(host="0.0.0.0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import msinference
|
7 |
import re
|
8 |
import srt
|
9 |
+
import time
|
10 |
import subprocess
|
11 |
import cv2
|
12 |
from pathlib import Path
|
|
|
21 |
|
22 |
Path(CACHE_DIR).mkdir(parents=True, exist_ok=True)
|
23 |
|
24 |
+
|
25 |
+
def resize_with_white_padding(image):
|
26 |
+
"""
|
27 |
+
Resizes an image to 1920x1080 while preserving aspect ratio
|
28 |
+
by adding white padding.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
image (np.ndarray): The input image as a NumPy array.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
np.ndarray: The resized image with white padding.
|
35 |
+
"""
|
36 |
+
h, w = image.shape[:2]
|
37 |
+
target_h, target_w = 1080, 1920
|
38 |
+
aspect_ratio = w / h
|
39 |
+
target_aspect_ratio = target_w / target_h
|
40 |
+
|
41 |
+
if aspect_ratio > target_aspect_ratio:
|
42 |
+
# Image is wider than the target, pad top and bottom
|
43 |
+
new_w = target_w
|
44 |
+
new_h = int(new_w / aspect_ratio)
|
45 |
+
resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
|
46 |
+
padding_h = target_h - new_h
|
47 |
+
top_padding = padding_h // 2
|
48 |
+
bottom_padding = padding_h - top_padding
|
49 |
+
padding = [(top_padding, bottom_padding), (0, 0)]
|
50 |
+
if len(image.shape) == 3:
|
51 |
+
padding.append((0, 0)) # Add padding for color channels
|
52 |
+
padded_image = np.pad(resized_image, padding, mode='constant', constant_values=255)
|
53 |
+
elif aspect_ratio < target_aspect_ratio:
|
54 |
+
# Image is taller than the target, pad left and right
|
55 |
+
new_h = target_h
|
56 |
+
new_w = int(new_h * aspect_ratio)
|
57 |
+
resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
|
58 |
+
padding_w = target_w - new_w
|
59 |
+
left_padding = padding_w // 2
|
60 |
+
right_padding = padding_w - left_padding
|
61 |
+
padding = [(0, 0), (left_padding, right_padding)]
|
62 |
+
if len(image.shape) == 3:
|
63 |
+
padding.append((0, 0)) # Add padding for color channels
|
64 |
+
padded_image = np.pad(resized_image, padding, mode='constant', constant_values=255)
|
65 |
+
else:
|
66 |
+
# Aspect ratio matches the target, just resize
|
67 |
+
padded_image = cv2.resize(image, (target_w, target_h), interpolation=cv2.INTER_LANCZOS4)
|
68 |
+
|
69 |
+
return padded_image # image 2 speech
|
70 |
+
|
71 |
+
|
72 |
def _shorten(filename):
|
73 |
return filename.replace("/","")[-6:]
|
74 |
|
|
|
106 |
|
107 |
def overlay(x,soundscape=None):
|
108 |
if soundscape is not None:
|
109 |
+
# AudioGen sound is suffice to be ~10s long
|
110 |
background = sound_generator.generate(soundscape,
|
111 |
+
duration=len(x)/16000 + .74, # sound duration = TTS dur
|
112 |
).detach().cpu().numpy() # bs, 11400 @.74s
|
113 |
+
|
114 |
+
# len_soundscape = len(background)
|
115 |
+
|
116 |
+
# fading = .5 + .5 * np.tanh(4*(np.linspace(10, -10, len_soundscape) + 9.4)) # fade heaviside 1,1,1,1,...,0
|
117 |
+
|
118 |
+
# x = np.concatenate([fading * background, x], 0) # blend TTS with AudioGen
|
119 |
+
#background /= np.abs(background).max() + 1e-7 # amplify speech to full [-1,1]
|
120 |
+
x = .4 * x + .46 * background[:len(x)] # background will be longer by xtra .74s
|
121 |
+
return x # TTS / AudioGen @ 16kHz
|
122 |
|
123 |
|
124 |
def tts_multi_sentence(precomputed_style_vector=None,
|
|
|
140 |
|
141 |
if precomputed_style_vector is not None:
|
142 |
x = []
|
143 |
+
if not isinstance(text, list):
|
144 |
+
text = split_into_sentences(text) # Avoid OOM in StyleTTS2
|
145 |
for _sentence in text:
|
146 |
|
147 |
# StyleTTS2 - pronounciation Fx
|
|
|
151 |
# fix sounding of sleepy AAABS TRAACT
|
152 |
_sentence = _sentence.replace('abstract', 'ahbstract') # 'ahstract'
|
153 |
x.append(msinference.inference(_sentence,
|
154 |
+
precomputed_style_vector)
|
155 |
)
|
156 |
x = np.concatenate(x)
|
157 |
|
|
|
159 |
|
160 |
else:
|
161 |
|
162 |
+
# dont split foreign sentences: Avoids speaker change issue
|
163 |
x = msinference.foreign(text=text,
|
164 |
lang=voice, # voice = 'romanian', 'serbian' 'hungarian'
|
165 |
speed=speed) # normalisation externally
|
|
|
219 |
text = [[j.content, j.start.total_seconds(), j.end.total_seconds()] for j in srt.parse(s)]
|
220 |
assert args.video is not None
|
221 |
native_audio_file = '_tmp.wav'
|
222 |
+
subprocess.run(
|
223 |
["ffmpeg",
|
224 |
"-y", # https://stackoverflow.com/questions/39788972/ffmpeg-overwrite-output-file-if-exists
|
225 |
"-i",
|
|
|
227 |
"-f",
|
228 |
"mp3",
|
229 |
"-ar",
|
230 |
+
"16000", # "22050 for mimic3",
|
231 |
"-vn",
|
232 |
native_audio_file])
|
233 |
x_native, _ = soundfile.read(native_audio_file) # reads mp3
|
234 |
+
|
235 |
+
# stereo in video
|
236 |
+
if x_native.ndim > 1:
|
237 |
+
x_native = x_native[:, 0] # stereo
|
238 |
+
|
239 |
# ffmpeg -i Sandra\ Kotevska\,\ Painting\ Rose\ bush\,\ mixed\ media\,\ 2017.\ \[NMzC_036MtE\].mkv -f mp3 -ar 22050 -vn out44.wa
|
240 |
else:
|
241 |
with open(args.text, 'r') as f:
|
242 |
+
text = ''.join(f)
|
243 |
+
text = re.sub(' +', ' ', text) # delete spaces / split in list in tts_multi_sentence()
|
|
|
|
|
244 |
|
245 |
+
# == STYLE VECTOR ==
|
246 |
|
247 |
precomputed_style_vector = None
|
248 |
|
|
|
256 |
native_audio_file += '__native_audio_track.wav'
|
257 |
soundfile.write('tgt_spk.wav',
|
258 |
np.concatenate([
|
259 |
+
x_native[:int(4 * 16000)]], 0).astype(np.float32), 16000) # 27400?
|
260 |
precomputed_style_vector = msinference.compute_style('tgt_spk.wav')
|
261 |
|
262 |
+
# NOTE: style vector is normally None here - except if --native arg was passed
|
263 |
|
264 |
+
# Native English Accent TTS
|
|
|
265 |
if precomputed_style_vector is None:
|
|
|
266 |
if 'en_US' in args.voice or 'en_UK' in args.voice:
|
267 |
_dir = '/' if args.affective else '_v2/'
|
268 |
precomputed_style_vector = msinference.compute_style(
|
|
|
271 |
'#', '_').replace(
|
272 |
'cmu-arctic', 'cmu_arctic').replace(
|
273 |
'_low', '') + '.wav')
|
274 |
+
# Non-Native English Accent TTS
|
|
|
|
|
275 |
elif '_' in args.voice:
|
276 |
precomputed_style_vector = msinference.compute_style('assets/wavs/mimic3_foreign_4x/' + args.voice.replace(
|
277 |
'/', '_').replace('#', '_').replace(
|
278 |
'cmu-arctic', 'cmu_arctic').replace(
|
279 |
'_low', '') + '.wav')
|
280 |
+
# Foreign Lang
|
|
|
|
|
281 |
else:
|
282 |
print(f'\n\n\n\n\n FallBack to MMS TTS due to: {args.voice=}')
|
283 |
|
284 |
|
285 |
+
# NOTE : precomputed_style_vector is still None if MMS TTS
|
286 |
+
|
287 |
+
# == SILENT VIDEO ==
|
288 |
|
289 |
if args.video is not None:
|
290 |
# banner - precomput @ 1920 pixels
|
|
|
356 |
im = np.copy(get_frame(t)) # pic
|
357 |
|
358 |
|
359 |
+
ix = int(t * 16000) # ix may overflow the is_tts.shape
|
360 |
+
if ix < num:
|
361 |
+
if is_tts[ix] > .5: # mask == 1 => tts / mask == 0 -> native
|
362 |
+
frame = frame_tts # rename frame to rsz_frame_... because if frame_tts is mod
|
363 |
+
# then is considered a "local variable" thus the "outer var"
|
364 |
+
# is not observed by python raising referenced before assign
|
365 |
+
else:
|
366 |
+
frame = frame_orig
|
367 |
+
# For the ix that is out of bounds of num assume frame_tts
|
368 |
else:
|
369 |
+
frame = frame_tts
|
370 |
|
371 |
# im[-h:, -w:, :] = (.4 * im[-h:, -w:, :] + .6 * frame_orig).astype(np.uint8)
|
372 |
|
|
|
407 |
if do_video_dub:
|
408 |
OUT_FILE = 'tmp.mp4' #args.out_file + '_video_dub.mp4'
|
409 |
subtitles = text
|
410 |
+
MAX_LEN = int(subtitles[-1][2] + 17) * 16000
|
411 |
# 17 extra seconds fail-safe for long-last-segment
|
412 |
print("TOTAL LEN SAMPLES ", MAX_LEN, '\n====================')
|
413 |
pieces = []
|
414 |
for k, (_text_, orig_start, orig_end) in enumerate(subtitles):
|
415 |
|
416 |
+
pieces.append(tts_multi_sentence(text=_text_,
|
|
|
|
|
|
|
417 |
precomputed_style_vector=precomputed_style_vector,
|
418 |
voice=args.voice,
|
419 |
soundscape=args.soundscape,
|
|
|
431 |
soundfile.write(AUDIO_TRACK,
|
432 |
# (is_tts * total + (1-is_tts) * x_native)[:, None],
|
433 |
(.64 * total + .27 * x_native)[:, None],
|
434 |
+
16000)
|
435 |
else: # Video from plain (.txt)
|
436 |
OUT_FILE = 'tmp.mp4'
|
437 |
x = tts_multi_sentence(text=text,
|
|
|
439 |
voice=args.voice,
|
440 |
soundscape=args.soundscape,
|
441 |
speed=args.speed)
|
442 |
+
soundfile.write(AUDIO_TRACK, x, 16000)
|
443 |
|
444 |
# IMAGE 2 SPEECH
|
445 |
|
446 |
if args.image is not None:
|
447 |
+
|
448 |
+
# Resize Input Image to 1920x1080 - Issue of .mp4 non visible for other aspect ratios
|
449 |
+
|
450 |
+
STATIC_FRAME = args.image + '.jpg' # 'assets/image_from_T31.jpg'
|
451 |
+
cv2.imwrite(
|
452 |
+
STATIC_FRAME,
|
453 |
+
resize_with_white_padding(cv2.imread(args.image)
|
454 |
+
))
|
455 |
+
|
456 |
OUT_FILE = 'tmp.mp4' #args.out_file + '_image_to_speech.mp4'
|
457 |
|
458 |
# SILENT CLIP
|
|
|
467 |
soundscape=args.soundscape,
|
468 |
speed=args.speed
|
469 |
)
|
470 |
+
soundfile.write(AUDIO_TRACK, x, 16000)
|
471 |
if args.video or args.image:
|
472 |
# write final output video
|
473 |
+
subprocess.run(
|
474 |
["ffmpeg",
|
475 |
"-y",
|
476 |
"-i",
|
|
|
496 |
soundscape=args.soundscape,
|
497 |
speed=args.speed)
|
498 |
OUT_FILE = 'tmp.wav'
|
499 |
+
soundfile.write(CACHE_DIR + OUT_FILE, x, 16000)
|
500 |
|
501 |
|
502 |
|
|
|
510 |
# response.headers["Content-Type"] = "audio/wav"
|
511 |
# https://stackoverflow.com/questions/67591467/
|
512 |
# flask-shows-typeerror-send-from-directory-missing-1-required-positional-argum
|
513 |
+
# time.sleep(4)
|
514 |
|
515 |
|
516 |
# send server's output as default file -> srv_result.xx
|
|
|
520 |
print('________________\n ? \n_______________')
|
521 |
return response
|
522 |
|
|
|
523 |
if __name__ == "__main__":
|
524 |
app.run(host="0.0.0.0")
|
525 |
+
|
526 |
+
|
527 |
+
# Concat. .mp4
|
528 |
+
|
529 |
+
# _list.txt
|
530 |
+
#
|
531 |
+
# file out/som_utasitvany_en_txt.mp4
|
532 |
+
# file out/som_utasitvany_hu_txt.mp4
|
533 |
+
#
|
534 |
+
#
|
535 |
+
# subprocess.run(
|
536 |
+
# [
|
537 |
+
# "ffmpeg",
|
538 |
+
# "-f",
|
539 |
+
# "concat",
|
540 |
+
# '-safe',
|
541 |
+
# '0',
|
542 |
+
# '-i',
|
543 |
+
# '_list.txt',
|
544 |
+
# '-c',
|
545 |
+
# 'copy',
|
546 |
+
# f'fusion.mp4', # save to correct location is handled in client
|
547 |
+
# ])
|
548 |
+
#
|
549 |
+
# ffmpeg -f concat -i mylist.txt -c copy output.mp4
|
models.py
CHANGED
@@ -304,7 +304,7 @@ class ProsodyPredictor(nn.Module):
|
|
304 |
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
305 |
|
306 |
def F0Ntrain(self, x, s):
|
307 |
-
|
308 |
x, _ = self.shared(x.transpose(1, 2)) # [bs, time, ch] LSTM
|
309 |
|
310 |
x = x.transpose(1, 2) # [bs, ch, time]
|
@@ -313,11 +313,11 @@ class ProsodyPredictor(nn.Module):
|
|
313 |
F0 = x
|
314 |
|
315 |
for block in self.F0:
|
316 |
-
print(f'LOOP {F0.shape=} {s.shape=}\n')
|
317 |
# )N F0.shape=torch.Size([1, 512, 147]) s.shape=torch.Size([1, 128])
|
318 |
F0 = block(F0, s) # This is an AdainResBlk1d expects conv1d dimensions
|
319 |
F0 = self.F0_proj(F0)
|
320 |
-
|
321 |
N = x
|
322 |
|
323 |
for block in self.N:
|
|
|
304 |
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
305 |
|
306 |
def F0Ntrain(self, x, s):
|
307 |
+
|
308 |
x, _ = self.shared(x.transpose(1, 2)) # [bs, time, ch] LSTM
|
309 |
|
310 |
x = x.transpose(1, 2) # [bs, ch, time]
|
|
|
313 |
F0 = x
|
314 |
|
315 |
for block in self.F0:
|
316 |
+
# print(f'LOOP {F0.shape=} {s.shape=}\n')
|
317 |
# )N F0.shape=torch.Size([1, 512, 147]) s.shape=torch.Size([1, 128])
|
318 |
F0 = block(F0, s) # This is an AdainResBlk1d expects conv1d dimensions
|
319 |
F0 = self.F0_proj(F0)
|
320 |
+
|
321 |
N = x
|
322 |
|
323 |
for block in self.N:
|
msinference.py
CHANGED
@@ -223,10 +223,15 @@ def inference(text,
|
|
223 |
s=ref)
|
224 |
|
225 |
x = x.cpu().numpy()[0, 0, :-400] # weird pulse at the end of sentences
|
226 |
-
|
227 |
-
|
|
|
228 |
if x.shape[0] > 10:
|
229 |
x /= np.abs(x).max() + 1e-7
|
|
|
|
|
|
|
|
|
230 |
else:
|
231 |
print('\n\n\n\n\nEMPTY TTS\n\n\n\n\n\nn', x.shape)
|
232 |
x = np.zeros(0)
|
@@ -393,18 +398,20 @@ def foreign(text=None, # split sentences here so we can prepend a txt for germ
|
|
393 |
tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
|
394 |
|
395 |
# CALL MMS TTS VITS
|
396 |
-
|
397 |
total_audio = []
|
398 |
-
|
399 |
# Split long sentences if deu to control voice switch - for other languages let text no-split
|
400 |
if not isinstance(text, list):
|
401 |
if lang_code == 'deu':
|
402 |
# Split Very long sentences >500 phoneme - StyleTTS2 crashes # -- even 400 phonemes sometimes OOM in cuda:4
|
403 |
# However prosody is nicer on non-split for MMS TTS
|
404 |
-
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text,
|
|
|
405 |
else:
|
406 |
-
text = [text]
|
407 |
-
|
|
|
408 |
for _t in text:
|
409 |
|
410 |
_t = _t.lower()
|
@@ -413,9 +420,9 @@ def foreign(text=None, # split sentences here so we can prepend a txt for germ
|
|
413 |
|
414 |
_t = re.sub(r'\d+', number_to_phonemes, _t)
|
415 |
_t = fix_phones(_t)
|
416 |
-
|
417 |
elif lang_code == 'ron':
|
418 |
-
|
419 |
# numerals
|
420 |
_t = romanian_num2str(_t)
|
421 |
|
@@ -425,31 +432,28 @@ def foreign(text=None, # split sentences here so we can prepend a txt for germ
|
|
425 |
|
426 |
# /data/dkounadis/.hf7/hub/models--facebook--mms-tts/snapshots/44cc7fb408064ef9ea6e7c59130d88cac1274671/models/rmc-script_latin/vocab.txt
|
427 |
inputs = tokenizer(_t, return_tensors="pt") # input_ids / attention_mask
|
428 |
-
|
429 |
with torch.no_grad():
|
430 |
-
|
431 |
# MMS
|
432 |
-
|
433 |
x = net_g(input_ids=inputs.input_ids.to(device),
|
434 |
attention_mask=inputs.attention_mask.to(device),
|
435 |
-
speed =
|
436 |
)[0, :]
|
437 |
-
|
438 |
# crop the 1st audio - is PREFIX text 156000 samples to chose deu voice / VitsAttention()
|
439 |
-
|
440 |
total_audio.append(x)
|
441 |
-
|
442 |
print(f'\n\n_______________________________ {_t} {x.shape=}')
|
443 |
-
|
444 |
x = torch.cat(total_audio).cpu().numpy()
|
445 |
-
|
446 |
x /= np.abs(x).max() + 1e-7
|
447 |
|
448 |
# print(x.shape, x.min(), x.max(), hps.data.sampling_rate)
|
449 |
-
|
450 |
-
x
|
451 |
-
original_rate=16000,
|
452 |
-
target_rate=24000)[0, :] # reshapes (64,) -> (1,64)
|
453 |
-
return x
|
454 |
|
455 |
|
|
|
223 |
s=ref)
|
224 |
|
225 |
x = x.cpu().numpy()[0, 0, :-400] # weird pulse at the end of sentences
|
226 |
+
|
227 |
+
# StyleTTS2 is 24kHz -> Resample to 16kHz ofAudioGen / MMS
|
228 |
+
|
229 |
if x.shape[0] > 10:
|
230 |
x /= np.abs(x).max() + 1e-7
|
231 |
+
x = audresample.resample(signal=x.astype(np.float32),
|
232 |
+
original_rate=24000,
|
233 |
+
target_rate=16000)[0, :] # reshapes (64,) -> (1,64)
|
234 |
+
|
235 |
else:
|
236 |
print('\n\n\n\n\nEMPTY TTS\n\n\n\n\n\nn', x.shape)
|
237 |
x = np.zeros(0)
|
|
|
398 |
tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
|
399 |
|
400 |
# CALL MMS TTS VITS
|
401 |
+
|
402 |
total_audio = []
|
403 |
+
|
404 |
# Split long sentences if deu to control voice switch - for other languages let text no-split
|
405 |
if not isinstance(text, list):
|
406 |
if lang_code == 'deu':
|
407 |
# Split Very long sentences >500 phoneme - StyleTTS2 crashes # -- even 400 phonemes sometimes OOM in cuda:4
|
408 |
# However prosody is nicer on non-split for MMS TTS
|
409 |
+
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text, 200, break_long_words=0)] # prepend txt snippet
|
410 |
+
# assert that it chooses unique voice
|
411 |
else:
|
412 |
+
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text, 140, break_long_words=0)] # allow longer non split text
|
413 |
+
# for non deu MMS TTS lang.
|
414 |
+
|
415 |
for _t in text:
|
416 |
|
417 |
_t = _t.lower()
|
|
|
420 |
|
421 |
_t = re.sub(r'\d+', number_to_phonemes, _t)
|
422 |
_t = fix_phones(_t)
|
423 |
+
|
424 |
elif lang_code == 'ron':
|
425 |
+
|
426 |
# numerals
|
427 |
_t = romanian_num2str(_t)
|
428 |
|
|
|
432 |
|
433 |
# /data/dkounadis/.hf7/hub/models--facebook--mms-tts/snapshots/44cc7fb408064ef9ea6e7c59130d88cac1274671/models/rmc-script_latin/vocab.txt
|
434 |
inputs = tokenizer(_t, return_tensors="pt") # input_ids / attention_mask
|
435 |
+
|
436 |
with torch.no_grad():
|
437 |
+
|
438 |
# MMS
|
439 |
+
|
440 |
x = net_g(input_ids=inputs.input_ids.to(device),
|
441 |
attention_mask=inputs.attention_mask.to(device),
|
442 |
+
speed = speed + .44 * np.random.rand() # variable speed for different sentence
|
443 |
)[0, :]
|
444 |
+
|
445 |
# crop the 1st audio - is PREFIX text 156000 samples to chose deu voice / VitsAttention()
|
446 |
+
|
447 |
total_audio.append(x)
|
448 |
+
|
449 |
print(f'\n\n_______________________________ {_t} {x.shape=}')
|
450 |
+
|
451 |
x = torch.cat(total_audio).cpu().numpy()
|
452 |
+
|
453 |
x /= np.abs(x).max() + 1e-7
|
454 |
|
455 |
# print(x.shape, x.min(), x.max(), hps.data.sampling_rate)
|
456 |
+
|
457 |
+
return x # 16kHz - only resample StyleTTS2 from 24Hkz -> 16kHz
|
|
|
|
|
|
|
458 |
|
459 |
|