LM has virtual 2nd batch
Browse files- audiocraft/audiogen.py +153 -2
- audiocraft/conditioners.py +3 -13
- audiocraft/genmodel.py +0 -144
- audiocraft/lm.py +20 -51
- audiocraft/transformer.py +38 -203
- audiocraft/utils/utils.py +5 -0
audiocraft/audiogen.py
CHANGED
@@ -11,9 +11,160 @@ and provide easy access to the generation API.
|
|
11 |
|
12 |
import typing as tp
|
13 |
import torch
|
14 |
-
|
15 |
-
from audiocraft.genmodel import BaseGenModel
|
16 |
from audiocraft.loaders import load_compression_model, load_lm_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
class AudioGen(BaseGenModel):
|
19 |
|
|
|
11 |
|
12 |
import typing as tp
|
13 |
import torch
|
|
|
|
|
14 |
from audiocraft.loaders import load_compression_model, load_lm_model
|
15 |
+
import typing as tp
|
16 |
+
import omegaconf
|
17 |
+
import torch
|
18 |
+
import numpy as np
|
19 |
+
from abc import ABC, abstractmethod
|
20 |
+
from .lm import LMModel
|
21 |
+
from .conditioners import ConditioningAttributes
|
22 |
+
from .utils.autocast import TorchAutocast
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
def _shift(x):
|
27 |
+
n = x.shape[2]
|
28 |
+
i = np.random.randint(.24 * n, max(1, .74 * n)) # high should be above >= 0 TBD do we have very short segments
|
29 |
+
x = torch.roll(x, i, dims=2)
|
30 |
+
return x
|
31 |
+
|
32 |
+
|
33 |
+
class BaseGenModel(ABC):
|
34 |
+
"""Base generative model with convenient generation API.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
name (str)
|
38 |
+
compression_model (CompressionModel): Encodec with Seanet Decoder
|
39 |
+
lm
|
40 |
+
max_duration (float, optional): As is using top250 token draw() we can gen xN sequences
|
41 |
+
"""
|
42 |
+
def __init__(self,
|
43 |
+
name,
|
44 |
+
compression_model,
|
45 |
+
lm,
|
46 |
+
max_duration=None):
|
47 |
+
self.name = name
|
48 |
+
self.compression_model = compression_model
|
49 |
+
self.lm = lm
|
50 |
+
self.cfg: tp.Optional[omegaconf.DictConfig] = None
|
51 |
+
# Just to be safe, let's put everything in eval mode.
|
52 |
+
self.compression_model.eval()
|
53 |
+
self.lm.eval()
|
54 |
+
|
55 |
+
if hasattr(lm, 'cfg'):
|
56 |
+
cfg = lm.cfg
|
57 |
+
assert isinstance(cfg, omegaconf.DictConfig)
|
58 |
+
self.cfg = cfg
|
59 |
+
|
60 |
+
if max_duration is None:
|
61 |
+
if self.cfg is not None:
|
62 |
+
max_duration = lm.cfg.dataset.segment_duration # type: ignore
|
63 |
+
else:
|
64 |
+
raise ValueError("You must provide max_duration when building directly your GenModel")
|
65 |
+
assert max_duration is not None
|
66 |
+
|
67 |
+
self.max_duration: float = max_duration
|
68 |
+
self.duration = self.max_duration
|
69 |
+
self.device = next(iter(lm.parameters())).device
|
70 |
+
self.generation_params={}
|
71 |
+
|
72 |
+
if self.device.type == 'cpu':
|
73 |
+
self.autocast = TorchAutocast(enabled=False)
|
74 |
+
else:
|
75 |
+
self.autocast = TorchAutocast(
|
76 |
+
enabled=True,
|
77 |
+
device_type=self.device.type,
|
78 |
+
dtype=torch.float16)
|
79 |
+
|
80 |
+
@property
|
81 |
+
def frame_rate(self) -> float:
|
82 |
+
"""Roughly the number of AR steps per seconds."""
|
83 |
+
return self.compression_model.frame_rate
|
84 |
+
|
85 |
+
@property
|
86 |
+
def sample_rate(self) -> int:
|
87 |
+
"""Sample rate of the generated audio."""
|
88 |
+
return self.compression_model.sample_rate
|
89 |
+
|
90 |
+
@property
|
91 |
+
def audio_channels(self) -> int:
|
92 |
+
"""Audio channels of the generated audio."""
|
93 |
+
return self.compression_model.channels
|
94 |
+
|
95 |
+
@torch.no_grad()
|
96 |
+
def _prepare_tokens_and_attributes(
|
97 |
+
self,
|
98 |
+
descriptions,
|
99 |
+
prompt,
|
100 |
+
):
|
101 |
+
attributes = [
|
102 |
+
ConditioningAttributes(text={'description': description}) for description in descriptions]
|
103 |
+
prompt_tokens = None
|
104 |
+
return attributes, prompt_tokens
|
105 |
+
|
106 |
+
def generate_unconditional(self,
|
107 |
+
num_samples,
|
108 |
+
progress=False,
|
109 |
+
return_tokens=False):
|
110 |
+
descriptions: tp.List[tp.Optional[str]] = [None] * num_samples
|
111 |
+
attributes, _ = self._prepare_tokens_and_attributes(descriptions, None)
|
112 |
+
tokens = self._generate_tokens(attributes)
|
113 |
+
if return_tokens:
|
114 |
+
return self.generate_audio(tokens), tokens
|
115 |
+
return self.generate_audio(tokens)
|
116 |
+
|
117 |
+
def generate(self,
|
118 |
+
descriptions,
|
119 |
+
progress=False,
|
120 |
+
return_tokens=False):
|
121 |
+
attributes, _ = self._prepare_tokens_and_attributes(descriptions, None)
|
122 |
+
tokens = self._generate_tokens(attributes)
|
123 |
+
if return_tokens:
|
124 |
+
return self.generate_audio(tokens), tokens
|
125 |
+
return self.generate_audio(tokens)
|
126 |
+
|
127 |
+
def _generate_tokens(self, attributes,
|
128 |
+
prompt_tokens=None,
|
129 |
+
progress=False):
|
130 |
+
|
131 |
+
total_gen_len = int(self.duration * self.frame_rate)
|
132 |
+
max_prompt_len = int(min(self.duration, self.max_duration) * self.frame_rate)
|
133 |
+
current_gen_offset: int = 0
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
if self.duration <= self.max_duration:
|
140 |
+
# generate by sampling from LM, simple case.
|
141 |
+
|
142 |
+
with self.autocast:
|
143 |
+
gen_tokens = self.lm.generate(conditions=attributes,
|
144 |
+
callback=None,
|
145 |
+
max_gen_len=total_gen_len,
|
146 |
+
**self.generation_params)
|
147 |
+
else:
|
148 |
+
print('<>Long gen ?<>')
|
149 |
+
# print(f'{gen_tokens.shape=}') # [5,4,35]
|
150 |
+
# FLATTEN BATCH AS EXTRA SEQUENCE (BATCH IS VIRTUAL JUST MULTINOMIAL SAMPLING OF N_DRAW TOKENS)
|
151 |
+
gen_tokens = gen_tokens.transpose(0, 1).reshape(4, -1)[None, :, :]
|
152 |
+
for _ in range(3):
|
153 |
+
print(gen_tokens.shape)
|
154 |
+
gen_tokens = _shift(gen_tokens)
|
155 |
+
return gen_tokens
|
156 |
+
|
157 |
+
def generate_audio(self, gen_tokens: torch.Tensor) -> torch.Tensor:
|
158 |
+
"""Generate Audio from tokens."""
|
159 |
+
assert gen_tokens.dim() == 3
|
160 |
+
with torch.no_grad():
|
161 |
+
gen_audio = self.compression_model.decode(gen_tokens, None)
|
162 |
+
return gen_audio
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
|
169 |
class AudioGen(BaseGenModel):
|
170 |
|
audiocraft/conditioners.py
CHANGED
@@ -385,19 +385,9 @@ class ConditionFuser(StreamingModule):
|
|
385 |
|
386 |
def forward(
|
387 |
self,
|
388 |
-
input
|
389 |
-
conditions:
|
390 |
-
|
391 |
-
"""Fuse the conditions to the provided model input.
|
392 |
-
|
393 |
-
Args:
|
394 |
-
input (torch.Tensor): Transformer input.
|
395 |
-
conditions (dict[str, ConditionType]): Dict of conditions.
|
396 |
-
Returns:
|
397 |
-
tuple[torch.Tensor, torch.Tensor]: The first tensor is the transformer input
|
398 |
-
after the conditions have been fused. The second output tensor is the tensor
|
399 |
-
used for cross-attention or None if no cross attention inputs exist.
|
400 |
-
"""
|
401 |
B, T, _ = input.shape
|
402 |
|
403 |
|
|
|
385 |
|
386 |
def forward(
|
387 |
self,
|
388 |
+
input,
|
389 |
+
conditions):
|
390 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
B, T, _ = input.shape
|
392 |
|
393 |
|
audiocraft/genmodel.py
DELETED
@@ -1,144 +0,0 @@
|
|
1 |
-
import typing as tp
|
2 |
-
import omegaconf
|
3 |
-
import torch
|
4 |
-
|
5 |
-
from abc import ABC, abstractmethod
|
6 |
-
|
7 |
-
from .lm import LMModel
|
8 |
-
from .conditioners import ConditioningAttributes
|
9 |
-
from .utils.autocast import TorchAutocast
|
10 |
-
|
11 |
-
|
12 |
-
class BaseGenModel(ABC):
|
13 |
-
"""Base generative model with convenient generation API.
|
14 |
-
|
15 |
-
Args:
|
16 |
-
name (str): name of the model.
|
17 |
-
compression_model (CompressionModel): Encodec with Seanet Decoder
|
18 |
-
lm (LMModel): Language model over discrete representations
|
19 |
-
max_duration (float, optional): As is using top250 token draw() we can gen xN sequences
|
20 |
-
"""
|
21 |
-
def __init__(self, name: str, compression_model, lm: LMModel,
|
22 |
-
max_duration: tp.Optional[float] = None):
|
23 |
-
self.name = name
|
24 |
-
self.compression_model = compression_model
|
25 |
-
self.lm = lm
|
26 |
-
self.cfg: tp.Optional[omegaconf.DictConfig] = None
|
27 |
-
# Just to be safe, let's put everything in eval mode.
|
28 |
-
self.compression_model.eval()
|
29 |
-
self.lm.eval()
|
30 |
-
|
31 |
-
if hasattr(lm, 'cfg'):
|
32 |
-
cfg = lm.cfg
|
33 |
-
assert isinstance(cfg, omegaconf.DictConfig)
|
34 |
-
self.cfg = cfg
|
35 |
-
|
36 |
-
if max_duration is None:
|
37 |
-
if self.cfg is not None:
|
38 |
-
max_duration = lm.cfg.dataset.segment_duration # type: ignore
|
39 |
-
else:
|
40 |
-
raise ValueError("You must provide max_duration when building directly your GenModel")
|
41 |
-
assert max_duration is not None
|
42 |
-
|
43 |
-
self.max_duration: float = max_duration
|
44 |
-
self.duration = self.max_duration
|
45 |
-
self.device = next(iter(lm.parameters())).device
|
46 |
-
self.generation_params={}
|
47 |
-
|
48 |
-
if self.device.type == 'cpu':
|
49 |
-
self.autocast = TorchAutocast(enabled=False)
|
50 |
-
else:
|
51 |
-
self.autocast = TorchAutocast(
|
52 |
-
enabled=True,
|
53 |
-
device_type=self.device.type,
|
54 |
-
dtype=torch.float16)
|
55 |
-
|
56 |
-
@property
|
57 |
-
def frame_rate(self) -> float:
|
58 |
-
"""Roughly the number of AR steps per seconds."""
|
59 |
-
return self.compression_model.frame_rate
|
60 |
-
|
61 |
-
@property
|
62 |
-
def sample_rate(self) -> int:
|
63 |
-
"""Sample rate of the generated audio."""
|
64 |
-
return self.compression_model.sample_rate
|
65 |
-
|
66 |
-
@property
|
67 |
-
def audio_channels(self) -> int:
|
68 |
-
"""Audio channels of the generated audio."""
|
69 |
-
return self.compression_model.channels
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
@abstractmethod
|
74 |
-
def set_generation_params(self, *args, **kwargs):
|
75 |
-
"""Set the generation parameters."""
|
76 |
-
raise NotImplementedError("No base implementation for setting generation params.")
|
77 |
-
|
78 |
-
@staticmethod
|
79 |
-
@abstractmethod
|
80 |
-
def get_pretrained(name: str, device=None):
|
81 |
-
raise NotImplementedError("No base implementation for getting pretrained model")
|
82 |
-
|
83 |
-
@torch.no_grad()
|
84 |
-
def _prepare_tokens_and_attributes(
|
85 |
-
self,
|
86 |
-
descriptions,
|
87 |
-
prompt,
|
88 |
-
):
|
89 |
-
attributes = [
|
90 |
-
ConditioningAttributes(text={'description': description}) for description in descriptions]
|
91 |
-
prompt_tokens = None
|
92 |
-
return attributes, prompt_tokens
|
93 |
-
|
94 |
-
def generate_unconditional(self,
|
95 |
-
num_samples,
|
96 |
-
progress=False,
|
97 |
-
return_tokens=False):
|
98 |
-
descriptions: tp.List[tp.Optional[str]] = [None] * num_samples
|
99 |
-
attributes, _ = self._prepare_tokens_and_attributes(descriptions, None)
|
100 |
-
tokens = self._generate_tokens(attributes)
|
101 |
-
if return_tokens:
|
102 |
-
return self.generate_audio(tokens), tokens
|
103 |
-
return self.generate_audio(tokens)
|
104 |
-
|
105 |
-
def generate(self, descriptions, progress = False, return_tokens= False):
|
106 |
-
attributes, _ = self._prepare_tokens_and_attributes(descriptions, None)
|
107 |
-
tokens = self._generate_tokens(attributes)
|
108 |
-
if return_tokens:
|
109 |
-
return self.generate_audio(tokens), tokens
|
110 |
-
return self.generate_audio(tokens)
|
111 |
-
|
112 |
-
def _generate_tokens(self, attributes,
|
113 |
-
prompt_tokens=None,
|
114 |
-
progress=False):
|
115 |
-
|
116 |
-
total_gen_len = int(self.duration * self.frame_rate)
|
117 |
-
max_prompt_len = int(min(self.duration, self.max_duration) * self.frame_rate)
|
118 |
-
current_gen_offset: int = 0
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
if self.duration <= self.max_duration:
|
125 |
-
# generate by sampling from LM, simple case.
|
126 |
-
|
127 |
-
with self.autocast:
|
128 |
-
gen_tokens = self.lm.generate(conditions=attributes,
|
129 |
-
callback=None,
|
130 |
-
max_gen_len=total_gen_len,
|
131 |
-
**self.generation_params)
|
132 |
-
else:
|
133 |
-
print('<>Long gen ?<>')
|
134 |
-
# print(f'{gen_tokens.shape=}') # [5,4,35]
|
135 |
-
# FLATTEN BATCH AS EXTRA SEQUENCE (BATCH IS VIRTUAL JUST MULTINOMIAL SAMPLING OF N_DRAW TOKENS)
|
136 |
-
gen_tokens = gen_tokens.transpose(0, 1).reshape(4, -1)[None, :, :]
|
137 |
-
return gen_tokens
|
138 |
-
|
139 |
-
def generate_audio(self, gen_tokens: torch.Tensor) -> torch.Tensor:
|
140 |
-
"""Generate Audio from tokens."""
|
141 |
-
assert gen_tokens.dim() == 3
|
142 |
-
with torch.no_grad():
|
143 |
-
gen_audio = self.compression_model.decode(gen_tokens, None)
|
144 |
-
return gen_audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
audiocraft/lm.py
CHANGED
@@ -148,7 +148,7 @@ class LMModel(StreamingModule):
|
|
148 |
super().__init__()
|
149 |
self.cfg_coef = cfg_coef
|
150 |
|
151 |
-
self.n_draw =
|
152 |
self.condition_provider = condition_provider
|
153 |
self.fuser = fuser
|
154 |
self.card = card # 2048 ?
|
@@ -213,24 +213,22 @@ class LMModel(StreamingModule):
|
|
213 |
def num_codebooks(self) -> int:
|
214 |
return self.n_q
|
215 |
|
216 |
-
def forward(self,
|
217 |
sequence,
|
218 |
conditions,
|
219 |
condition_tensors=None,
|
220 |
stage = -1):
|
221 |
B, K, S = sequence.shape
|
222 |
-
|
|
|
223 |
input_ = sum([self.emb[k](sequence[:, k]) for k in range(K)])
|
224 |
-
|
225 |
-
assert not self._is_streaming, "Conditions tensors should be precomputed when streaming."
|
226 |
-
|
227 |
-
# encode conditions and fuse, both have a streaming cache to not recompute when generating.
|
228 |
-
condition_tensors = self.condition_provider(tokenized)
|
229 |
-
else:
|
230 |
-
assert not conditions, "Shouldn't pass both conditions and condition_tensors."
|
231 |
|
232 |
input_, cross_attention_input = self.fuser(input_, condition_tensors) # DEFINE conditioners.py
|
233 |
-
|
|
|
|
|
|
|
234 |
out = self.transformer(input_, cross_attention_src=cross_attention_input,
|
235 |
src_mask=(self.attn_mask_per_stage[stage] if stage >= 0 else None))
|
236 |
if self.out_norm:
|
@@ -240,7 +238,7 @@ class LMModel(StreamingModule):
|
|
240 |
# remove the prefix from the model outputs
|
241 |
if len(self.fuser.fuse2cond['prepend']) > 0:
|
242 |
logits = logits[:, :, -S:]
|
243 |
-
print('PRESFIX')
|
244 |
|
245 |
return logits # [B, K, S, card]
|
246 |
|
@@ -260,49 +258,20 @@ class LMModel(StreamingModule):
|
|
260 |
cfg_coef = self.cfg_coef if cfg_coef is None else cfg_coef
|
261 |
model = self if self._fsdp is None else self._fsdp
|
262 |
two_step_cfg = self.two_step_cfg if two_step_cfg is None else two_step_cfg
|
263 |
-
|
264 |
-
print('\nNOT HERE\n')
|
265 |
-
else:
|
266 |
-
print('C')
|
267 |
-
assert isinstance(cfg_conditions, dict)
|
268 |
-
condition_tensors = cfg_conditions
|
269 |
-
if condition_tensors:
|
270 |
-
print('\nDcat\n') # enters here
|
271 |
-
|
272 |
-
sequence = torch.cat([sequence, sequence], dim=0) # if i concatenate
|
273 |
-
# concatenates in batch but we only want to run 1st sequence - continutation
|
274 |
-
# the other paths will build "BLindly"
|
275 |
-
all_logits = model(
|
276 |
-
sequence,
|
277 |
-
conditions=[], condition_tensors=condition_tensors)
|
278 |
-
if condition_tensors:
|
279 |
-
cond_logits, uncond_logits = all_logits.split(B, dim=0) #torch.Size([2, 4, 1, 2048])
|
280 |
-
# logits = uncond_logits + (cond_logits - uncond_logits) * cfg_coef
|
281 |
-
# logits = 3 * cond_logits - 2.4 * uncond_logits
|
282 |
-
logits = 2 * cond_logits - 1.4 * uncond_logits
|
283 |
-
else:
|
284 |
-
print('\nF!\n')
|
285 |
-
|
286 |
-
|
287 |
-
logits = logits.permute(0, 1, 3, 2) # [1, 4, 2048, 1]
|
288 |
-
# No crop this is just squeeze() of time
|
289 |
-
logits = logits[..., -1] # [1 x 4 x 2048]
|
290 |
-
|
291 |
-
|
292 |
-
# Apply softmax for sampling if temp > 0. Else, do greedy sampling to avoid zero division error.
|
293 |
|
294 |
-
# print(f'\nR {temp=} {top_p=} {top_k=}\n') -------------> R temp=1.0 top_p=0.0 top_k=250
|
295 |
-
# print(f'{temp=}') # 1.0
|
296 |
-
probs = torch.softmax(logits / temp, dim=-1)
|
297 |
|
298 |
-
next_token = utils.sample_top_k(probs, k=top_k, n_draw=self.n_draw)
|
299 |
|
|
|
|
|
|
|
300 |
|
301 |
-
#
|
302 |
-
|
303 |
-
#
|
|
|
|
|
304 |
|
305 |
-
# To return multiple tokens here (batch_size = num_draws)
|
306 |
return next_token
|
307 |
|
308 |
# GENERATE class revert_codebook_patterns()
|
@@ -385,7 +354,7 @@ class LMModel(StreamingModule):
|
|
385 |
# but continue the sequence only with isingle next token
|
386 |
|
387 |
for offset in range(1, gen_sequence_len): # start_offset_sequence=1
|
388 |
-
print(f'{
|
389 |
# starts from 1 not 0 thus uses the 0:1 as curr sequence
|
390 |
# although this is empty contains -1 ?
|
391 |
|
|
|
148 |
super().__init__()
|
149 |
self.cfg_coef = cfg_coef
|
150 |
|
151 |
+
self.n_draw = 24
|
152 |
self.condition_provider = condition_provider
|
153 |
self.fuser = fuser
|
154 |
self.card = card # 2048 ?
|
|
|
213 |
def num_codebooks(self) -> int:
|
214 |
return self.n_q
|
215 |
|
216 |
+
def forward(self,
|
217 |
sequence,
|
218 |
conditions,
|
219 |
condition_tensors=None,
|
220 |
stage = -1):
|
221 |
B, K, S = sequence.shape
|
222 |
+
|
223 |
+
|
224 |
input_ = sum([self.emb[k](sequence[:, k]) for k in range(K)])
|
225 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
input_, cross_attention_input = self.fuser(input_, condition_tensors) # DEFINE conditioners.py
|
228 |
+
|
229 |
+
# print(f'{input_.shape=} {cross_attention_input.shape=} FUSER LLM FORw')
|
230 |
+
# input_.shape=torch.Size([1, 1, 1536]) cross_attention_input.shape=torch.Size([2, 7, 1536]) FUSER LLM FORw
|
231 |
+
|
232 |
out = self.transformer(input_, cross_attention_src=cross_attention_input,
|
233 |
src_mask=(self.attn_mask_per_stage[stage] if stage >= 0 else None))
|
234 |
if self.out_norm:
|
|
|
238 |
# remove the prefix from the model outputs
|
239 |
if len(self.fuser.fuse2cond['prepend']) > 0:
|
240 |
logits = logits[:, :, -S:]
|
241 |
+
print('==========================================PRESFIX')
|
242 |
|
243 |
return logits # [B, K, S, card]
|
244 |
|
|
|
258 |
cfg_coef = self.cfg_coef if cfg_coef is None else cfg_coef
|
259 |
model = self if self._fsdp is None else self._fsdp
|
260 |
two_step_cfg = self.two_step_cfg if two_step_cfg is None else two_step_cfg
|
261 |
+
condition_tensors = cfg_conditions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
|
|
|
|
|
|
263 |
|
|
|
264 |
|
265 |
+
logits = model(
|
266 |
+
sequence, # cond_logits = wav condition
|
267 |
+
conditions=[], condition_tensors=condition_tensors) # uncond_logits already see the text
|
268 |
|
269 |
+
# print(f'{logits.shape=} L')
|
270 |
+
logits = logits[0, :, :, :].transpose(1,0) # sample expects [1, 4, 2048]
|
271 |
+
# logits = [2, 4, 1, 2048]
|
272 |
+
# print(f'{B=}, {logits.shape=} SAMPLER {top_k=}')
|
273 |
+
next_token = utils.sample_top_k(logits, k=top_k, n_draw=self.n_draw) # [1,4,2048] logits
|
274 |
|
|
|
275 |
return next_token
|
276 |
|
277 |
# GENERATE class revert_codebook_patterns()
|
|
|
354 |
# but continue the sequence only with isingle next token
|
355 |
|
356 |
for offset in range(1, gen_sequence_len): # start_offset_sequence=1
|
357 |
+
# print(f'{_gen_sequence.shape=}') # [1,4,16]
|
358 |
# starts from 1 not 0 thus uses the 0:1 as curr sequence
|
359 |
# although this is empty contains -1 ?
|
360 |
|
audiocraft/transformer.py
CHANGED
@@ -177,7 +177,7 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
177 |
self.past_context = past_context
|
178 |
self.memory_efficient = memory_efficient
|
179 |
self.attention_as_float32 = attention_as_float32
|
180 |
-
|
181 |
self.cross_attention = cross_attention
|
182 |
self.safe_streaming = safe_streaming
|
183 |
self.num_heads = num_heads
|
@@ -230,38 +230,6 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
230 |
state_dict[prefix + "mha." + key] = state_dict.pop(prefix + key)
|
231 |
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
|
232 |
|
233 |
-
def _get_mask(self, current_steps: int, device: torch.device, dtype: torch.dtype):
|
234 |
-
# Return a causal mask, accounting for potentially stored past keys/values
|
235 |
-
# We actually return a bias for the attention score, as this has the same
|
236 |
-
# convention both in the builtin MHA in Pytorch, and Xformers functions.
|
237 |
-
time_dim = _get_attention_time_dimension(self.memory_efficient)
|
238 |
-
if self.memory_efficient:
|
239 |
-
from xformers.ops import LowerTriangularMask
|
240 |
-
if current_steps == 1:
|
241 |
-
# If we only have one step, then we do not need a mask.
|
242 |
-
return None
|
243 |
-
elif 'past_keys' in self._streaming_state:
|
244 |
-
raise RuntimeError("Not supported at the moment")
|
245 |
-
else:
|
246 |
-
# Then we can safely use a lower triangular mask
|
247 |
-
return LowerTriangularMask()
|
248 |
-
if self._streaming_state:
|
249 |
-
past_keys = self._streaming_state['past_keys']
|
250 |
-
past_steps = past_keys.shape[time_dim]
|
251 |
-
else:
|
252 |
-
past_steps = 0
|
253 |
-
|
254 |
-
queries_pos = torch.arange(
|
255 |
-
past_steps, current_steps + past_steps, device=device).view(-1, 1)
|
256 |
-
keys_pos = torch.arange(past_steps + current_steps, device=device).view(1, -1)
|
257 |
-
delta = queries_pos - keys_pos
|
258 |
-
valid = delta >= 0
|
259 |
-
if self.past_context is not None:
|
260 |
-
valid &= (delta <= self.past_context)
|
261 |
-
return torch.where(
|
262 |
-
valid,
|
263 |
-
torch.zeros([], device=device, dtype=dtype),
|
264 |
-
torch.full([], float('-inf'), device=device, dtype=dtype))
|
265 |
|
266 |
def _complete_kv(self, k, v):
|
267 |
time_dim = _get_attention_time_dimension(self.memory_efficient)
|
@@ -272,11 +240,14 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
272 |
return k, v
|
273 |
# Complete the key/value pair using the streaming state.
|
274 |
if self._streaming_state:
|
|
|
275 |
pk = self._streaming_state['past_keys']
|
276 |
nk = torch.cat([pk, k], dim=time_dim)
|
277 |
if v is k:
|
|
|
278 |
nv = nk
|
279 |
else:
|
|
|
280 |
pv = self._streaming_state['past_values']
|
281 |
nv = torch.cat([pv, v], dim=time_dim)
|
282 |
else:
|
@@ -286,35 +257,28 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
286 |
assert nk.shape[time_dim] == nv.shape[time_dim]
|
287 |
offset = 0
|
288 |
if self.past_context is not None:
|
|
|
289 |
offset = max(0, nk.shape[time_dim] - self.past_context)
|
290 |
if self._is_streaming:
|
291 |
self._streaming_state['past_keys'] = nk[:, offset:]
|
292 |
if v is not k:
|
|
|
293 |
self._streaming_state['past_values'] = nv[:, offset:]
|
294 |
if 'offset' in self._streaming_state:
|
|
|
295 |
self._streaming_state['offset'] += offset
|
296 |
else:
|
|
|
297 |
self._streaming_state['offset'] = torch.tensor(0)
|
298 |
return nk, nv
|
299 |
|
300 |
-
|
301 |
-
time_dim = _get_attention_time_dimension(self.memory_efficient)
|
302 |
-
# Apply rope embeddings to query and key tensors.
|
303 |
-
assert self.rope is not None
|
304 |
-
if 'past_keys' in self._streaming_state:
|
305 |
-
past_keys_offset = self._streaming_state['past_keys'].shape[1]
|
306 |
-
else:
|
307 |
-
past_keys_offset = 0
|
308 |
-
if 'offset' in self._streaming_state:
|
309 |
-
past_context_offset = int(self._streaming_state['offset'].item())
|
310 |
-
else:
|
311 |
-
past_context_offset = 0
|
312 |
-
streaming_offset = past_context_offset + past_keys_offset
|
313 |
-
return self.rope.rotate_qk(query, key, start=streaming_offset, time_dim=time_dim)
|
314 |
|
315 |
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor,
|
316 |
key_padding_mask=None, need_weights=False, attn_mask=None,
|
317 |
average_attn_weights=True, is_causal=False):
|
|
|
|
|
318 |
assert not is_causal, ("New param added in torch 2.0.1 not supported, "
|
319 |
"use the causal args in the constructor.")
|
320 |
|
@@ -328,29 +292,22 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
328 |
assert self.causal or self.cross_attention, \
|
329 |
"Streaming only available for causal or cross attention"
|
330 |
|
331 |
-
|
332 |
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
assert query.shape[1] == key.shape[1], "Causal only for same length query / key / value"
|
337 |
-
assert value.shape[1] == key.shape[1], "Causal only for same length query / key / value"
|
338 |
-
attn_mask = self._get_mask(query.shape[1], query.device, query.dtype)
|
339 |
|
340 |
if self.custom:
|
341 |
-
|
342 |
-
assert need_weights is False
|
343 |
-
assert key_padding_mask is None
|
344 |
if self.cross_attention:
|
|
|
345 |
# Different queries, keys, values, we have to spit manually the weights
|
346 |
# before applying the linear.
|
347 |
dim = self.in_proj_weight.shape[0] // 3
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
bias_q = self.in_proj_bias[:dim]
|
352 |
-
bias_k = self.in_proj_bias[dim: 2 * dim]
|
353 |
-
bias_v = self.in_proj_bias[2 * dim:]
|
354 |
q = nn.functional.linear(query, self.in_proj_weight[:dim], bias_q)
|
355 |
# todo: when streaming, we could actually save k, v and check the shape actually match.
|
356 |
k = nn.functional.linear(key, self.in_proj_weight[dim: 2 * dim], bias_k)
|
@@ -366,125 +323,31 @@ class StreamingMultiheadAttention(StreamingModule):
|
|
366 |
assert value is key, "specialized implementation"
|
367 |
projected = nn.functional.linear(query, self.in_proj_weight, self.in_proj_bias)
|
368 |
if self.kv_repeat == 1:
|
|
|
369 |
if time_dim == 2:
|
370 |
bound_layout = "b h p t d"
|
371 |
else:
|
372 |
bound_layout = "b t p h d"
|
373 |
packed = rearrange(projected, f"b t (p h d) -> {bound_layout}", p=3, h=self.num_heads)
|
374 |
q, k, v = ops.unbind(packed, dim=2)
|
375 |
-
else:
|
376 |
-
embed_dim = self.embed_dim
|
377 |
-
per_head_dim = (embed_dim // self.num_heads)
|
378 |
-
kv_heads = self.num_heads // self.kv_repeat
|
379 |
-
q = projected[:, :, :embed_dim]
|
380 |
-
start = embed_dim
|
381 |
-
end = start + per_head_dim * kv_heads
|
382 |
-
k = projected[:, :, start: end]
|
383 |
-
v = projected[:, :, end:]
|
384 |
-
q = rearrange(q, f"b t (h d) -> {layout}", h=self.num_heads)
|
385 |
-
k = rearrange(k, f"b t (h d) -> {layout}", h=kv_heads)
|
386 |
-
v = rearrange(v, f"b t (h d) -> {layout}", h=kv_heads)
|
387 |
|
388 |
-
|
389 |
-
assert self.kv_repeat == 1
|
390 |
-
q, k = [rearrange(x, f"{layout} -> b t (h d)") for x in [q, k]]
|
391 |
-
q = self.q_layer_norm(q)
|
392 |
-
k = self.k_layer_norm(k)
|
393 |
-
q, k = [rearrange(x, f"b t (h d) -> {layout}", h=self.num_heads) for x in [q, k]]
|
394 |
-
if self.rope:
|
395 |
-
q, k = self._apply_rope(q, k)
|
396 |
k, v = self._complete_kv(k, v)
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
q, k, v =
|
402 |
-
|
403 |
-
|
404 |
-
# When using a custom attn mask:
|
405 |
-
# Move to query's device, repeat for each sample, remove align8 padding
|
406 |
-
seq_len = query.shape[1]
|
407 |
-
attn_mask = attn_mask.to(q.dtype)
|
408 |
-
attn_mask = attn_mask.repeat((q.shape[0], 1, 1, 1))
|
409 |
-
attn_mask = attn_mask[..., :seq_len, :seq_len]
|
410 |
-
|
411 |
-
p = self.dropout if self.training else 0
|
412 |
-
if _efficient_attention_backend == 'torch':
|
413 |
-
x = torch.nn.functional.scaled_dot_product_attention(
|
414 |
-
q, k, v, is_causal=attn_mask is not None, dropout_p=p)
|
415 |
-
else:
|
416 |
-
x = ops.memory_efficient_attention(q, k, v, attn_mask, p=p)
|
417 |
-
else:
|
418 |
-
# We include the dot product as float32, for consistency
|
419 |
-
# with the other implementations that include that step
|
420 |
-
# as part of the attention. Note that when using `autocast`,
|
421 |
-
# the einsums would be done as bfloat16, but the softmax
|
422 |
-
# would be done as bfloat16, so `attention_as_float32` will
|
423 |
-
# extend a bit the range of operations done in float32,
|
424 |
-
# although this should make no difference.
|
425 |
-
q = q / q.shape[-1] ** 0.5
|
426 |
-
key_layout = layout.replace('t', 'k')
|
427 |
-
query_layout = layout
|
428 |
-
if self._is_streaming and self.safe_streaming and q.device.type == 'cuda':
|
429 |
-
with torch.autocast(device_type=q.device.type, dtype=torch.float32):
|
430 |
-
pre_w = torch.einsum(f"{query_layout},{key_layout}-> b h t k", q, k)
|
431 |
-
else:
|
432 |
-
pre_w = torch.einsum(f"{query_layout},{key_layout}-> b h t k", q, k)
|
433 |
-
if attn_mask is not None:
|
434 |
-
pre_w = pre_w + attn_mask
|
435 |
-
w = torch.softmax(pre_w, dim=-1)
|
436 |
-
w = F.dropout(w, self.dropout, training=self.training).to(v)
|
437 |
-
# Key and value have the same format.
|
438 |
-
x = torch.einsum(f"b h t k, {key_layout} -> {layout}", w, v)
|
439 |
x = x.to(dtype)
|
440 |
x = rearrange(x, f"{layout} -> b t (h d)", h=self.num_heads)
|
441 |
x = self.out_proj(x)
|
442 |
-
else:
|
443 |
-
key, value = self._complete_kv(key, value)
|
444 |
-
if self.attention_as_float32:
|
445 |
-
query, key, value = [x.float() for x in [query, key, value]]
|
446 |
-
x, _ = self.mha(
|
447 |
-
query, key, value, key_padding_mask,
|
448 |
-
need_weights, attn_mask, average_attn_weights)
|
449 |
-
x = x.to(dtype)
|
450 |
-
|
451 |
return x, None
|
452 |
|
453 |
|
454 |
class StreamingTransformerLayer(nn.TransformerEncoderLayer):
|
455 |
-
"""TransformerLayer with Streaming / Causal support.
|
456 |
-
This also integrates cross_attention, when passing `cross_attention=True`,
|
457 |
-
rather than having two separate classes like in PyTorch.
|
458 |
|
459 |
-
Args:
|
460 |
-
d_model (int): Dimension of the data.
|
461 |
-
num_heads (int): Number of heads.
|
462 |
-
dim_feedforward (int): Intermediate dimension of FF module.
|
463 |
-
dropout (float): Dropout both for MHA and FF.
|
464 |
-
bias_ff (bool): Use bias for FF.
|
465 |
-
bias_attn (bool): Use bias for MHA.
|
466 |
-
causal (bool): Causal mask applied automatically.
|
467 |
-
past_context (int, optional): Receptive field for the causal mask, infinite if None.
|
468 |
-
custom (bool): Use custom MHA implementation, for testing / benchmarking.
|
469 |
-
memory_efficient (bool): Use xformers based memory efficient attention.
|
470 |
-
attention_as_float32 (bool): Perform the attention as float32
|
471 |
-
(especially important with memory_efficient as autocast won't do this automatically).
|
472 |
-
qk_layer_norm (bool): Layer normalization applied to queries and keys before dot product in attention.
|
473 |
-
qk_layer_norm_cross (bool): Same for the cross attention.
|
474 |
-
cross_attention (bool): If True, expect to get secondary input for cross-attention.
|
475 |
-
Cross attention will use the default MHA, as it typically won't require
|
476 |
-
special treatment.
|
477 |
-
layer_scale (float, optional): If not None, LayerScale will be used with
|
478 |
-
the given value as initial scale.
|
479 |
-
rope (`RotaryEmbedding`, optional): Rope embedding to use.
|
480 |
-
attention_dropout (float, optional): If not None, separate the value of the dimension dropout
|
481 |
-
in FFN and of the attention dropout.
|
482 |
-
kv_repeat (int): If > 1, will repeat keys and queries multiple times (need to divide num_heads).
|
483 |
-
This will lead to faster decoding time on A100 or other GPUs with tensorcore.
|
484 |
-
device (torch.device, optional): Device on which to initialize.
|
485 |
-
dtype (torch.dtype, optional): dtype to use.
|
486 |
-
**kwargs: See `nn.TransformerEncoderLayer`.
|
487 |
-
"""
|
488 |
def __init__(self, d_model: int, num_heads: int, dim_feedforward: int = 2048, dropout: float = 0.1,
|
489 |
bias_ff: bool = True, bias_attn: bool = True, causal: bool = False,
|
490 |
past_context: tp.Optional[int] = None, custom: bool = False,
|
@@ -632,6 +495,7 @@ class StreamingTransformer(StreamingModule):
|
|
632 |
assert positional_embedding in ['sin', 'rope', 'sin_rope']
|
633 |
self.rope: tp.Optional[RotaryEmbedding] = None
|
634 |
if self.positional_embedding in ['rope', 'sin_rope']:
|
|
|
635 |
assert _is_custom(custom, memory_efficient)
|
636 |
self.rope = RotaryEmbedding(d_model // num_heads, max_period=max_period,
|
637 |
xpos=xpos, scale=positional_scale, device=device)
|
@@ -659,43 +523,11 @@ class StreamingTransformer(StreamingModule):
|
|
659 |
# backward hook inside of FSDP...
|
660 |
layer._magma_checkpointed = True # type: ignore
|
661 |
|
662 |
-
|
663 |
-
method = self.checkpointing
|
664 |
-
print(f'{method=}')
|
665 |
-
if method == 'none':
|
666 |
-
print([i.shape for i in args])
|
667 |
-
x = layer(*args, **kwargs) # [10, 1, 1536] probably does no t detect the bathc somwhere
|
668 |
-
return x
|
669 |
-
# elif method == 'torch':
|
670 |
-
# print('TORCH')
|
671 |
-
# return torch_checkpoint(layer, *args, use_reentrant=False, **kwargs)
|
672 |
-
# elif method.startswith('xformers'):
|
673 |
-
# print('XFORMERS')
|
674 |
-
# from xformers.checkpoint_fairinternal import checkpoint, _get_default_policy
|
675 |
-
# if method == 'xformers_default':
|
676 |
-
# # those operations will be saved, and not recomputed.
|
677 |
-
# # According to Francisco we can get smarter policies but this is a good start.
|
678 |
-
# allow_list = [
|
679 |
-
# "xformers.efficient_attention_forward_cutlass.default",
|
680 |
-
# "xformers_flash.flash_fwd.default",
|
681 |
-
# "aten.addmm.default",
|
682 |
-
# "aten.mm.default",
|
683 |
-
# ]
|
684 |
-
# elif method == 'xformers_mm':
|
685 |
-
# # those operations will be saved, and not recomputed.
|
686 |
-
# # According to Francisco we can get smarter policies but this is a good start.
|
687 |
-
# allow_list = [
|
688 |
-
# "aten.addmm.default",
|
689 |
-
# "aten.mm.default",
|
690 |
-
# ]
|
691 |
-
# else:
|
692 |
-
# raise ValueError(f"xformers checkpointing xformers policy {method} is not known.")
|
693 |
-
# policy_fn = _get_default_policy(allow_list)
|
694 |
-
# return checkpoint(layer, *args, policy_fn=policy_fn, **kwargs)
|
695 |
-
# else:
|
696 |
-
# raise ValueError(f"Checkpointing method {method} is unknown.")
|
697 |
|
698 |
def forward(self, x: torch.Tensor, *args, **kwargs):
|
|
|
|
|
699 |
B, T, C = x.shape
|
700 |
|
701 |
if 'offsets' in self._streaming_state:
|
@@ -704,17 +536,20 @@ class StreamingTransformer(StreamingModule):
|
|
704 |
offsets = torch.zeros(B, dtype=torch.long, device=x.device)
|
705 |
|
706 |
if self.positional_embedding in ['sin', 'sin_rope']:
|
|
|
707 |
positions = torch.arange(T, device=x.device).view(1, -1, 1)
|
708 |
positions = positions + offsets.view(-1, 1, 1)
|
709 |
pos_emb = create_sin_embedding(positions, C, max_period=self.max_period, dtype=x.dtype)
|
710 |
x = x + self.positional_scale * pos_emb
|
711 |
|
712 |
for layer in self.layers:
|
713 |
-
|
|
|
|
|
714 |
|
715 |
if self._is_streaming:
|
716 |
self._streaming_state['offsets'] = offsets + T
|
717 |
-
|
718 |
return x
|
719 |
|
720 |
def make_optim_group(self):
|
|
|
177 |
self.past_context = past_context
|
178 |
self.memory_efficient = memory_efficient
|
179 |
self.attention_as_float32 = attention_as_float32
|
180 |
+
|
181 |
self.cross_attention = cross_attention
|
182 |
self.safe_streaming = safe_streaming
|
183 |
self.num_heads = num_heads
|
|
|
230 |
state_dict[prefix + "mha." + key] = state_dict.pop(prefix + key)
|
231 |
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
|
232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
def _complete_kv(self, k, v):
|
235 |
time_dim = _get_attention_time_dimension(self.memory_efficient)
|
|
|
240 |
return k, v
|
241 |
# Complete the key/value pair using the streaming state.
|
242 |
if self._streaming_state:
|
243 |
+
# print('{self._streaming_state.keys()=}') EMPTY - ALTHOUGH WE HAVE STREAMING STATE
|
244 |
pk = self._streaming_state['past_keys']
|
245 |
nk = torch.cat([pk, k], dim=time_dim)
|
246 |
if v is k:
|
247 |
+
|
248 |
nv = nk
|
249 |
else:
|
250 |
+
|
251 |
pv = self._streaming_state['past_values']
|
252 |
nv = torch.cat([pv, v], dim=time_dim)
|
253 |
else:
|
|
|
257 |
assert nk.shape[time_dim] == nv.shape[time_dim]
|
258 |
offset = 0
|
259 |
if self.past_context is not None:
|
260 |
+
|
261 |
offset = max(0, nk.shape[time_dim] - self.past_context)
|
262 |
if self._is_streaming:
|
263 |
self._streaming_state['past_keys'] = nk[:, offset:]
|
264 |
if v is not k:
|
265 |
+
|
266 |
self._streaming_state['past_values'] = nv[:, offset:]
|
267 |
if 'offset' in self._streaming_state:
|
268 |
+
|
269 |
self._streaming_state['offset'] += offset
|
270 |
else:
|
271 |
+
|
272 |
self._streaming_state['offset'] = torch.tensor(0)
|
273 |
return nk, nv
|
274 |
|
275 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor,
|
278 |
key_padding_mask=None, need_weights=False, attn_mask=None,
|
279 |
average_attn_weights=True, is_causal=False):
|
280 |
+
|
281 |
+
|
282 |
assert not is_causal, ("New param added in torch 2.0.1 not supported, "
|
283 |
"use the causal args in the constructor.")
|
284 |
|
|
|
292 |
assert self.causal or self.cross_attention, \
|
293 |
"Streaming only available for causal or cross attention"
|
294 |
|
295 |
+
|
296 |
|
297 |
+
|
298 |
+
|
299 |
+
|
|
|
|
|
|
|
300 |
|
301 |
if self.custom:
|
302 |
+
|
|
|
|
|
303 |
if self.cross_attention:
|
304 |
+
|
305 |
# Different queries, keys, values, we have to spit manually the weights
|
306 |
# before applying the linear.
|
307 |
dim = self.in_proj_weight.shape[0] // 3
|
308 |
+
|
309 |
+
bias_q, bias_k, bias_v = None, None, None
|
310 |
+
|
|
|
|
|
|
|
311 |
q = nn.functional.linear(query, self.in_proj_weight[:dim], bias_q)
|
312 |
# todo: when streaming, we could actually save k, v and check the shape actually match.
|
313 |
k = nn.functional.linear(key, self.in_proj_weight[dim: 2 * dim], bias_k)
|
|
|
323 |
assert value is key, "specialized implementation"
|
324 |
projected = nn.functional.linear(query, self.in_proj_weight, self.in_proj_bias)
|
325 |
if self.kv_repeat == 1:
|
326 |
+
|
327 |
if time_dim == 2:
|
328 |
bound_layout = "b h p t d"
|
329 |
else:
|
330 |
bound_layout = "b t p h d"
|
331 |
packed = rearrange(projected, f"b t (p h d) -> {bound_layout}", p=3, h=self.num_heads)
|
332 |
q, k, v = ops.unbind(packed, dim=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
k, v = self._complete_kv(k, v)
|
336 |
+
#print(f'{k.shape=}, {v.shape=}, {q.shape=}\n\n\n\n')
|
337 |
+
# what is the 24 dimension is this heads?
|
338 |
+
|
339 |
+
x = torch.nn.functional.scaled_dot_product_attention(
|
340 |
+
q, k, v, is_causal=attn_mask is not None, dropout_p=0)
|
341 |
+
|
342 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
x = x.to(dtype)
|
344 |
x = rearrange(x, f"{layout} -> b t (h d)", h=self.num_heads)
|
345 |
x = self.out_proj(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
return x, None
|
347 |
|
348 |
|
349 |
class StreamingTransformerLayer(nn.TransformerEncoderLayer):
|
|
|
|
|
|
|
350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
def __init__(self, d_model: int, num_heads: int, dim_feedforward: int = 2048, dropout: float = 0.1,
|
352 |
bias_ff: bool = True, bias_attn: bool = True, causal: bool = False,
|
353 |
past_context: tp.Optional[int] = None, custom: bool = False,
|
|
|
495 |
assert positional_embedding in ['sin', 'rope', 'sin_rope']
|
496 |
self.rope: tp.Optional[RotaryEmbedding] = None
|
497 |
if self.positional_embedding in ['rope', 'sin_rope']:
|
498 |
+
print('ROPE\nL')
|
499 |
assert _is_custom(custom, memory_efficient)
|
500 |
self.rope = RotaryEmbedding(d_model // num_heads, max_period=max_period,
|
501 |
xpos=xpos, scale=positional_scale, device=device)
|
|
|
523 |
# backward hook inside of FSDP...
|
524 |
layer._magma_checkpointed = True # type: ignore
|
525 |
|
526 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
527 |
|
528 |
def forward(self, x: torch.Tensor, *args, **kwargs):
|
529 |
+
# Input x: [1, 1, 1536]
|
530 |
+
# Output x: [2, 1, 1536] how is batch expanded to 2
|
531 |
B, T, C = x.shape
|
532 |
|
533 |
if 'offsets' in self._streaming_state:
|
|
|
536 |
offsets = torch.zeros(B, dtype=torch.long, device=x.device)
|
537 |
|
538 |
if self.positional_embedding in ['sin', 'sin_rope']:
|
539 |
+
# print(f'{self.positional_embedding=}\n') 'sin'
|
540 |
positions = torch.arange(T, device=x.device).view(1, -1, 1)
|
541 |
positions = positions + offsets.view(-1, 1, 1)
|
542 |
pos_emb = create_sin_embedding(positions, C, max_period=self.max_period, dtype=x.dtype)
|
543 |
x = x + self.positional_scale * pos_emb
|
544 |
|
545 |
for layer in self.layers:
|
546 |
+
# print(f'{args=} {kwargs.keys()=}')
|
547 |
+
# # kwargs=() kwargs={'cross_attention_src', 'src_mask'}
|
548 |
+
x = layer(x, **kwargs)
|
549 |
|
550 |
if self._is_streaming:
|
551 |
self._streaming_state['offsets'] = offsets + T
|
552 |
+
print('OUT STReamTransfor', x.shape)
|
553 |
return x
|
554 |
|
555 |
def make_optim_group(self):
|
audiocraft/utils/utils.py
CHANGED
@@ -94,6 +94,11 @@ def sample_top_k(p, k, n_draw=None):
|
|
94 |
p probabs 2048 ?
|
95 |
num_draw : how many tokens to sample (for duplicate elongation)
|
96 |
"""
|
|
|
|
|
|
|
|
|
|
|
97 |
top_k_value, i250 = torch.topk(p, k, dim=-1) # probs: [1, 4, 2048]
|
98 |
min_value_top_k = top_k_value[..., [-1]] #
|
99 |
p *= (p >= min_value_top_k).float()
|
|
|
94 |
p probabs 2048 ?
|
95 |
num_draw : how many tokens to sample (for duplicate elongation)
|
96 |
"""
|
97 |
+
|
98 |
+
p = torch.softmax(p / 1.0, dim=-1)
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
top_k_value, i250 = torch.topk(p, k, dim=-1) # probs: [1, 4, 2048]
|
103 |
min_value_top_k = top_k_value[..., [-1]] #
|
104 |
p *= (p >= min_value_top_k).float()
|