per-sentence scripts / for cer
Browse files- correct_figure.py +1 -1
- visualize_per_sentence.py +244 -0
correct_figure.py
CHANGED
|
@@ -299,7 +299,7 @@ for audio_prompt in ['english',
|
|
| 299 |
'foreign',
|
| 300 |
'foreign_4x']: # each of these creates a separate pkl - so outer for
|
| 301 |
#
|
| 302 |
-
data = np.zeros((
|
| 303 |
|
| 304 |
|
| 305 |
|
|
|
|
| 299 |
'foreign',
|
| 300 |
'foreign_4x']: # each of these creates a separate pkl - so outer for
|
| 301 |
#
|
| 302 |
+
data = np.zeros((770, len(LABELS)*2 + 2)) # 768 x LABELS-prompt & LABELS-stts2 & cer-prompt & cer-stts2
|
| 303 |
|
| 304 |
|
| 305 |
|
visualize_per_sentence.py
ADDED
|
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# PREREQUISITY
|
| 2 |
+
|
| 3 |
+
# correct_figure.py -> makes analytic.pkl & CER -> per sentence No Audinterface sliding window
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import os
|
| 6 |
+
import numpy as np
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import audiofile
|
| 10 |
+
|
| 11 |
+
columns = ['prompt-arousal',
|
| 12 |
+
'prompt-dominance',
|
| 13 |
+
'prompt-valence',
|
| 14 |
+
'prompt-Angry',
|
| 15 |
+
'prompt-Sad',
|
| 16 |
+
'prompt-Happy',
|
| 17 |
+
'prompt-Surprise',
|
| 18 |
+
'prompt-Fear',
|
| 19 |
+
'prompt-Disgust',
|
| 20 |
+
'prompt-Contempt',
|
| 21 |
+
'prompt-Neutral',
|
| 22 |
+
'styletts2-arousal',
|
| 23 |
+
'styletts2-dominance',
|
| 24 |
+
'styletts2-valence',
|
| 25 |
+
'styletts2-Angry',
|
| 26 |
+
'styletts2-Sad',
|
| 27 |
+
'styletts2-Happy',
|
| 28 |
+
'styletts2-Surprise',
|
| 29 |
+
'styletts2-Fear',
|
| 30 |
+
'styletts2-Disgust',
|
| 31 |
+
'styletts2-Contempt',
|
| 32 |
+
'styletts2-Neutral',
|
| 33 |
+
'cer-prompt',
|
| 34 |
+
'cer-styletts2']
|
| 35 |
+
|
| 36 |
+
FULL_PKL = ['english_4x_analytic.pkl',
|
| 37 |
+
'english_analytic.pkl',
|
| 38 |
+
'foreign_4x_analytic.pkl',
|
| 39 |
+
'foreign_analytic.pkl',
|
| 40 |
+
'human_analytic.pkl']
|
| 41 |
+
# -------------------------------------------
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
LABELS = ['arousal', 'dominance', 'valence',
|
| 46 |
+
# 'speech_synthesizer', 'synthetic_singing',
|
| 47 |
+
'Angry',
|
| 48 |
+
'Sad',
|
| 49 |
+
'Happy',
|
| 50 |
+
'Surprise',
|
| 51 |
+
'Fear',
|
| 52 |
+
'Disgust',
|
| 53 |
+
'Contempt',
|
| 54 |
+
'Neutral'
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# https://arxiv.org/pdf/2407.12229
|
| 61 |
+
# https://arxiv.org/pdf/2312.05187
|
| 62 |
+
# https://arxiv.org/abs/2407.05407
|
| 63 |
+
# https://arxiv.org/pdf/2408.06577
|
| 64 |
+
# https://arxiv.org/pdf/2309.07405
|
| 65 |
+
preds = {}
|
| 66 |
+
|
| 67 |
+
for file_interface in FULL_PKL:
|
| 68 |
+
y = pd.read_pickle(file_interface)
|
| 69 |
+
preds[file_interface] = y
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
for lang in ['english',
|
| 74 |
+
'foreign']:
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
fig, ax = plt.subplots(nrows=8, ncols=2, figsize=(24,20.7),
|
| 78 |
+
gridspec_kw={'hspace': 0, 'wspace': .04})
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
time_stamp = np.arange(len(preds['english_analytic.pkl']))
|
| 84 |
+
_z = np.zeros(len(preds['english_analytic.pkl']))
|
| 85 |
+
for j, dim in enumerate(['arousal', 'dominance', 'valence']):
|
| 86 |
+
|
| 87 |
+
# MIMIC3
|
| 88 |
+
|
| 89 |
+
ax[j, 0].plot(time_stamp, preds[f'{lang}_analytic.pkl'][f'styletts2-{dim}'],
|
| 90 |
+
color=(0,104/255,139/255),
|
| 91 |
+
label='mean_1',
|
| 92 |
+
linewidth=2)
|
| 93 |
+
ax[j, 0].fill_between(time_stamp,
|
| 94 |
+
|
| 95 |
+
_z,
|
| 96 |
+
preds['human_analytic.pkl'][f'styletts2-{dim}'],
|
| 97 |
+
|
| 98 |
+
color=(.2,.2,.2),
|
| 99 |
+
alpha=0.244)
|
| 100 |
+
if j == 0:
|
| 101 |
+
if lang == 'english':
|
| 102 |
+
desc = 'English'
|
| 103 |
+
else:
|
| 104 |
+
desc = 'Non-English'
|
| 105 |
+
ax[j, 0].legend([f'StyleTTS2 using Mimic-3 {desc}',
|
| 106 |
+
f'StyleTTS2 uising EmoDB'],
|
| 107 |
+
prop={'size': 14},
|
| 108 |
+
)
|
| 109 |
+
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=17)
|
| 110 |
+
|
| 111 |
+
# TICK
|
| 112 |
+
ax[j, 0].set_ylim([1e-7, .9999])
|
| 113 |
+
# ax[j, 0].set_yticks([.25, .5,.75])
|
| 114 |
+
# ax[j, 0].set_yticklabels(['0.25', '.5', '0.75'])
|
| 115 |
+
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
| 116 |
+
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# MIMIC3 4x speed
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
ax[j, 1].plot(time_stamp, preds[f'{lang}_4x_analytic.pkl'][f'styletts2-{dim}'],
|
| 123 |
+
color=(0,104/255,139/255),
|
| 124 |
+
label='mean_1',
|
| 125 |
+
linewidth=2)
|
| 126 |
+
ax[j, 1].fill_between(time_stamp,
|
| 127 |
+
|
| 128 |
+
_z,
|
| 129 |
+
preds['human_analytic.pkl'][f'styletts2-{dim}'],
|
| 130 |
+
|
| 131 |
+
color=(.2,.2,.2),
|
| 132 |
+
alpha=0.244)
|
| 133 |
+
if j == 0:
|
| 134 |
+
if lang == 'english':
|
| 135 |
+
desc = 'English'
|
| 136 |
+
else:
|
| 137 |
+
desc = 'Non-English'
|
| 138 |
+
ax[j, 1].legend([f'StyleTTS2 using Mimic-3 {desc} 4x speed',
|
| 139 |
+
f'StyleTTS2 using EmoDB'],
|
| 140 |
+
prop={'size': 14},
|
| 141 |
+
# loc='lower right'
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
ax[j, 1].set_xlabel('720 Harvard Sentences')
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
# TICK
|
| 150 |
+
ax[j, 1].set_ylim([1e-7, .9999])
|
| 151 |
+
# ax[j, 1].set_yticklabels(['' for _ in ax[j, 1].get_yticklabels()])
|
| 152 |
+
ax[j, 1].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
| 153 |
+
ax[j, 1].set_xlim([time_stamp[0], time_stamp[-1]])
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
ax[j, 0].grid()
|
| 159 |
+
ax[j, 1].grid()
|
| 160 |
+
# CATEGORIE
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
for j, dim in enumerate(['Angry',
|
| 168 |
+
'Sad',
|
| 169 |
+
'Happy',
|
| 170 |
+
# 'Surprise',
|
| 171 |
+
'Fear',
|
| 172 |
+
'Disgust',
|
| 173 |
+
# 'Contempt',
|
| 174 |
+
# 'Neutral'
|
| 175 |
+
]): # ASaHSuFDCN
|
| 176 |
+
j = j + 3 # skip A/D/V suplt
|
| 177 |
+
|
| 178 |
+
# MIMIC3
|
| 179 |
+
|
| 180 |
+
ax[j, 0].plot(time_stamp, preds[f'{lang}_analytic.pkl'][f'styletts2-{dim}'],
|
| 181 |
+
color=(0,104/255,139/255),
|
| 182 |
+
label='mean_1',
|
| 183 |
+
linewidth=2)
|
| 184 |
+
ax[j, 0].fill_between(time_stamp,
|
| 185 |
+
|
| 186 |
+
_z,
|
| 187 |
+
preds['human_analytic.pkl'][f'styletts2-{dim}'],
|
| 188 |
+
|
| 189 |
+
color=(.2,.2,.2),
|
| 190 |
+
alpha=0.244)
|
| 191 |
+
# ax[j, 0].legend(['StyleTTS2 style mimic3',
|
| 192 |
+
# 'StyleTTS2 style crema-d'],
|
| 193 |
+
# prop={'size': 10},
|
| 194 |
+
# # loc='upper left'
|
| 195 |
+
# )
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=17)
|
| 199 |
+
|
| 200 |
+
# TICKS
|
| 201 |
+
ax[j, 0].set_ylim([1e-7, .9999])
|
| 202 |
+
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
|
| 203 |
+
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
| 204 |
+
ax[j, 0].set_xlabel('720 Harvard Sentences', fontsize=17, color=(.2,.2,.2))
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# MIMIC3 4x speed
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
ax[j, 1].plot(time_stamp, preds[f'{lang}_4x_analytic.pkl'][f'styletts2-{dim}'],
|
| 211 |
+
color=(0,104/255,139/255),
|
| 212 |
+
label='mean_1',
|
| 213 |
+
linewidth=2)
|
| 214 |
+
ax[j, 1].fill_between(time_stamp,
|
| 215 |
+
|
| 216 |
+
_z,
|
| 217 |
+
preds['human_analytic.pkl'][f'styletts2-{dim}'],
|
| 218 |
+
|
| 219 |
+
color=(.2,.2,.2),
|
| 220 |
+
alpha=0.244)
|
| 221 |
+
# ax[j, 1].legend(['StyleTTS2 style mimic3 4x speed',
|
| 222 |
+
# 'StyleTTS2 style crema-d'],
|
| 223 |
+
# prop={'size': 10},
|
| 224 |
+
# # loc='upper left'
|
| 225 |
+
# )
|
| 226 |
+
ax[j, 1].set_xlabel('720 Harvard Sentences', fontsize=17, color=(.2,.2,.2))
|
| 227 |
+
ax[j, 1].set_ylim([1e-7, .9999])
|
| 228 |
+
# ax[j, 1].set_yticklabels(['' for _ in ax[j, 1].get_yticklabels()])
|
| 229 |
+
ax[j, 1].set_xticklabels(['' for _ in ax[j, 1].get_xticklabels()])
|
| 230 |
+
ax[j, 1].set_xlim([time_stamp[0], time_stamp[-1]])
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
ax[j, 0].grid()
|
| 238 |
+
ax[j, 1].grid()
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
plt.savefig(f'persentence_{lang}.pdf', bbox_inches='tight')
|
| 243 |
+
plt.close()
|
| 244 |
+
|