artificial-styletts2 / msinference.py
Dionyssos's picture
oscillate vits duration
c7362aa
raw
history blame
12.5 kB
from Modules.vits.models import VitsModel, VitsTokenizer
import sys
import tempfile
import re
import os
from collections import OrderedDict
from Modules.hifigan import Decoder
from Utils.PLBERT.util import load_plbert
import phonemizer
import torch
from cached_path import cached_path
import nltk
import audresample
nltk.download('punkt', download_dir='./') # comment if downloaded once
nltk.download('punkt_tab', download_dir='./')
nltk.data.path.append('.')
import numpy as np
import yaml
import librosa
from models import ProsodyPredictor, TextEncoder, StyleEncoder, MelSpec
from nltk.tokenize import word_tokenize
from Utils.text_utils import transliterate_number
import textwrap
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
print(len(dicts))
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
print('CLEAN', text)
return indexes
textclenaer = TextCleaner()
def alpha_num(f):
f = re.sub(' +', ' ', f) # delete spaces
f = re.sub(r'[^A-Z a-z0-9 ]+', '', f) # del non alpha num
return f
mel_spec = MelSpec().to(device)
def compute_style(path):
x, sr = librosa.load(path, sr=24000)
x, _ = librosa.effects.trim(x, top_db=30)
if sr != 24000:
x = librosa.resample(x, sr, 24000)
with torch.no_grad():
x = torch.from_numpy(x[None, :]).to(device=device, dtype=torch.float)
mel_tensor = (torch.log(1e-5 + mel_spec(x)) + 4) / 4
#mel_tensor = preprocess(audio).to(device)
ref_s = style_encoder(mel_tensor)
ref_p = predictor_encoder(mel_tensor) # [bs, 11, 1, 128]
s = torch.cat([ref_s, ref_p], dim=3) # [bs, 11, 1, 256]
s = s[:, :, 0, :].transpose(1, 2) # [1, 128, 11]
return s # [1, 128, 11]
global_phonemizer = phonemizer.backend.EspeakBackend(
language='en-us', preserve_punctuation=True, with_stress=True)
# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
args = yaml.safe_load(open(str('Utils/config.yml')))
ASR_config = args['ASR_config']
bert = load_plbert(args['PLBERT_dir']).eval().to(device)
decoder = Decoder(dim_in=512,
style_dim=128,
dim_out=80, # n_mels
resblock_kernel_sizes=[3, 7, 11],
upsample_rates=[10, 5, 3, 2],
upsample_initial_channel=512,
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_kernel_sizes=[20, 10, 6, 4]).eval().to(device)
text_encoder = TextEncoder(channels=512,
kernel_size=5,
depth=3, # args['model_params']['n_layer'],
n_symbols=178, # args['model_params']['n_token']
).eval().to(device)
predictor = ProsodyPredictor(style_dim=128,
d_hid=512,
nlayers=3, # OFFICIAL config.nlayers=5;
max_dur=50).eval().to(device)
style_encoder = StyleEncoder(dim_in=64,
style_dim=128,
max_conv_dim=512).eval().to(device) # acoustic style encoder
predictor_encoder = StyleEncoder(dim_in=64,
style_dim=128,
max_conv_dim=512).eval().to(device) # prosodic style encoder
bert_encoder = torch.nn.Linear(bert.config.hidden_size, 512).eval().to(device)
# params_whole = torch.load('freevc2/yl4579_styletts2.pth' map_location='cpu')
params_whole = torch.load(str(cached_path(
"hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu', weights_only=True)
params = params_whole['net']
#params['decoder'].pop('module.generator.m_source.l_linear.weight')
#params['decoder'].pop('module.generator.m_source.l_linear.bias') # SourceHNSf
def _del_prefix(d):
# del ".module"
out = OrderedDict()
for k, v in d.items():
out[k[7:]] = v
return out
bert.load_state_dict(_del_prefix(params['bert']), strict=True)
bert_encoder.load_state_dict(_del_prefix(params['bert_encoder']), strict=True)
# XTRA non-ckpt LSTMs nlayers add slowiness to voice
predictor.load_state_dict(_del_prefix(params['predictor']), strict=True)
decoder.load_state_dict(_del_prefix(params['decoder']), strict=True)
text_encoder.load_state_dict(_del_prefix(params['text_encoder']), strict=True)
predictor_encoder.load_state_dict(_del_prefix(
params['predictor_encoder']), strict=True)
style_encoder.load_state_dict(_del_prefix(
params['style_encoder']), strict=True)
def inference(text,
ref_s):
# text = transliterate_number(text, lang='en').strip() # Transliteration only used for foreign() # perhaps add xtra . after ? ;
ps = global_phonemizer.phonemize([text])
ps = word_tokenize(ps[0])
ps = ' '.join(ps)
tokens = textclenaer(ps)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
hidden_states = text_encoder(tokens)
bert_dur = bert(tokens, attention_mask=torch.ones_like(tokens))
d_en = bert_encoder(bert_dur).transpose(-1, -2)
aln_trg, F0_pred, N_pred = predictor(d_en=d_en, s=ref_s[:, 128:, :])
asr = torch.bmm(aln_trg, hidden_states)
asr = asr.transpose(1, 2)
asr = torch.cat([asr[:, :, 0:1], asr[:, :, 0:-1]], 2)
x = decoder(asr=asr, # [1, 512, 201]
F0_curve=F0_pred, # [1, 1, 402] 2x time
N=N_pred, # [1, 1, 402] 2x time
s=ref_s[:, :128, :]) # [1, 256, 1]
x = x.cpu().numpy()[0, 0, :]
x[-400:] = 0 # noisy pulse produced for unterminated sentences, in absence of punctuation, (not sure if same behaviour for all voices)
# StyleTTS2 is 24kHz -> Resample to 16kHz as is AudioGen / MMS
if x.shape[0] > 10:
x = audresample.resample(signal=x.astype(np.float32),
original_rate=24000,
target_rate=16000)[0, :] # audresample reshapes (64,) -> (1,64) | Volume Normalisation applies in api.py:tts_multi_sentence()
else:
print('\n\n\n\n\nEMPTY TTS\n\n\n\n\n\nn', x.shape)
x = np.zeros(0)
return x
# ___________________________________________________________
# https://huggingface.co/spaces/mms-meta/MMS/blob/main/tts.py
# ___________________________________________________________
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
TTS_LANGUAGES = {}
# with open('_d.csv', 'w') as f2:
with open(f"Utils/all_langs.csv") as f:
for line in f:
iso, name = line.split(",", 1)
TTS_LANGUAGES[iso.strip()] = name.strip()
# f2.write(iso + ',' + name.replace("a S","")+'\n')
# ==============================================================================================
# LOAD hun / ron / serbian - rmc-script_latin / cyrillic-Carpathian (not Vlax)
# ==============================================================================================
PHONEME_MAP = {
'služ': 'sloooozz', # 'službeno'
'suver': 'siuveeerra', # 'suverena'
'država': 'dirrezav', # 'država'
'iči': 'ici', # 'Graniči'
's ': 'se', # a s with space
'q': 'ku',
'w': 'aou',
'z': 's',
"š": "s",
'th': 'ta',
'v': 'vv',
# "ć": "č",
# "đ": "ď",
# "lj": "ľ",
# "nj": "ň",
"ž": "z",
# "c": "č"
}
def fix_phones(text):
for src, target in PHONEME_MAP.items():
text = text.replace(src, target)
# text = re.sub(r'\s+', '` `', text) #.strip() #.lower()
# text = re.sub(r'\s+', '_ _', text) # almost proper pausing
return text.replace(',', '_ _').replace('.', '_ _')
def has_cyrillic(text):
# https://stackoverflow.com/questions/48255244/python-check-if-a-string-contains-cyrillic-characters
return bool(re.search('[\u0400-\u04FF]', text))
def foreign(text=None, # split sentences here so we can prepend a txt for german to each sentence to
# fall on the male voice (Sink attn)
lang='romanian',
speed=None):
# https://huggingface.co/dkounadis/artificial-styletts2/blob/main/Utils/all_langs.csv
lang = lang.lower()
# https://huggingface.co/spaces/mms-meta/MMS
if 'hun' in lang:
lang_code = 'hun'
elif any([i in lang for i in ['ser', 'bosn', 'herzegov', 'montenegr', 'macedon']]):
if has_cyrillic(text): # check 0-th sentence if is cyrillic
# romani carpathian (also has latin / cyrillic Vlax)
lang_code = 'rmc-script_cyrillic'
else:
# romani carpathian (has also Vlax)
lang_code = 'rmc-script_latin'
elif 'rom' in lang:
lang_code = 'ron'
elif 'ger' in lang or 'deu' in lang or 'allem' in lang:
lang_code = 'deu'
elif 'alban' in lang:
lang_code = 'sqi'
else:
lang_code = lang.split()[0].strip()
# load VITS
# net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
# tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
global cached_lang_code, cached_net_g, cached_tokenizer
if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
cached_lang_code = lang_code
cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
net_g = cached_net_g
tokenizer = cached_tokenizer
total_audio = []
# Split long sentences if deu to control voice switch - for other languages let text no-split
if not isinstance(text, list):
# Split Very long sentences
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text, 440, break_long_words=0)]
for _t in text:
_t = _t.lower()
# NUMBERS
try:
_t = transliterate_number(_t, lang=lang_code)
except NotImplementedError:
print('Transliterate Numbers - NotImplemented for {lang_code=}', _t,'\n____________________________________________')
# PRONOUNC.
if lang_code == 'rmc-script_latin':
_t = fix_phones(_t) # phonemes replace per language
elif lang_code == 'ron':
# tone
_t = _t.replace("ţ", "ț"
).replace('ț', 'ts').replace('î', 'u').replace('â', 'a').replace('ş', 's')
# /data/dkounadis/.hf7/hub/models--facebook--mms-tts/snapshots/44cc7fb408064ef9ea6e7c59130d88cac1274671/models/rmc-script_latin/vocab.txt
# input_ids / attention_mask
inputs = tokenizer(_t, return_tensors="pt")
with torch.no_grad():
# MMS
x = net_g(input_ids=inputs.input_ids.to(device),
attention_mask=inputs.attention_mask.to(device),
lang_code=lang_code,
)[0, :]
# crop the 1st audio - is PREFIX text 156000 samples to chose deu voice / VitsAttention()
total_audio.append(x)
print(f'\n\n_______________________________ {_t} {x.shape=}')
x = torch.cat(total_audio).cpu().numpy()
# x /= np.abs(x).max() + 1e-7 ~ Volume normalisation @api.py:tts_multi_sentence() OR demo.py
return x # 16kHz - only resample StyleTTS2 from 24Hkz -> 16kHz