File size: 10,287 Bytes
38f0a43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdfb608
38f0a43
 
 
bdfb608
38f0a43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c797d
38f0a43
 
 
d3c797d
38f0a43
 
d3c797d
 
38f0a43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdfb608
38f0a43
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import copy
import math
import torch
from torch import nn
from torch.nn import functional as F

import commons
import modules
import attentions

from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from commons import init_weights, get_padding


class StochasticDurationPredictor(nn.Module):
  def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
    super().__init__()
    filter_channels = in_channels # it needs to be removed from future version.
    self.in_channels = in_channels
    self.filter_channels = filter_channels
    self.kernel_size = kernel_size
    self.p_dropout = p_dropout
    self.n_flows = n_flows
    self.gin_channels = gin_channels

    self.log_flow = modules.Log()
    self.flows = nn.ModuleList()
    self.flows.append(modules.ElementwiseAffine(2))
    for i in range(n_flows):
      self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
      self.flows.append(modules.Flip())

    self.post_pre = nn.Conv1d(1, filter_channels, 1)
    self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
    self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
    self.post_flows = nn.ModuleList()
    self.post_flows.append(modules.ElementwiseAffine(2))
    for i in range(4):
      self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
      self.post_flows.append(modules.Flip())

    self.pre = nn.Conv1d(in_channels, filter_channels, 1)
    self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
    self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
    if gin_channels != 0:
      self.cond = nn.Conv1d(gin_channels, filter_channels, 1)

  def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
    x = torch.detach(x)
    x = self.pre(x)
    if g is not None:
      g = torch.detach(g)
      x = x + self.cond(g)
    x = self.convs(x, x_mask)
    x = self.proj(x) * x_mask

    if not reverse:
      raise ValueError
    else:
      flows = list(reversed(self.flows))
      flows = flows[:-2] + [flows[-1]] # remove a useless vflow
      z = torch.zeros(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) #* noise_scale
      for flow in flows:
        z = flow(z, x_mask, g=x, reverse=reverse)
      z0, z1 = torch.split(z, [1, 1], 1)
      logw = z0
      return logw

class TextEncoder(nn.Module):
  def __init__(self,
      n_vocab,
      out_channels,
      hidden_channels,
      filter_channels,
      n_heads,
      n_layers,
      kernel_size,
      p_dropout):
    super().__init__()
    self.n_vocab = n_vocab
    self.out_channels = out_channels
    self.hidden_channels = hidden_channels
    self.filter_channels = filter_channels
    self.n_heads = n_heads
    self.n_layers = n_layers
    self.kernel_size = kernel_size
    self.p_dropout = p_dropout

    self.emb = nn.Embedding(n_vocab, hidden_channels)
    nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)

    self.encoder = attentions.Encoder(
      hidden_channels,
      filter_channels,
      n_heads,
      n_layers,
      kernel_size,
      p_dropout)
    self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)

  def forward(self, x, x_lengths):
    x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
    x = torch.transpose(x, 1, -1) # [b, h, t]
    x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)

    x = self.encoder(x * x_mask, x_mask)
    stats = self.proj(x) * x_mask

    m, logs = torch.split(stats, self.out_channels, dim=1)
    return x, m, logs, x_mask


class ResidualCouplingBlock(nn.Module):
  def __init__(self,
      channels,
      hidden_channels,
      kernel_size,
      dilation_rate,
      n_layers,
      n_flows=4,
      gin_channels=0):
    super().__init__()
    self.channels = channels
    self.hidden_channels = hidden_channels
    self.kernel_size = kernel_size
    self.dilation_rate = dilation_rate
    self.n_layers = n_layers
    self.n_flows = n_flows
    self.gin_channels = gin_channels

    self.flows = nn.ModuleList()
    for i in range(n_flows):
      self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
      self.flows.append(modules.Flip())

  def forward(self, x, x_mask, g=None, reverse=False):
    if not reverse:
      for flow in self.flows:
        x, _ = flow(x, x_mask, g=g, reverse=reverse)
    else:
      for flow in reversed(self.flows):
        x = flow(x, x_mask, g=g, reverse=reverse)
    return x

class Generator(torch.nn.Module):
    def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
        super(Generator, self).__init__()
        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_rates)
        self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
        resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2

        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            self.ups.append(weight_norm(
                ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
                                k, u, padding=(k-u)//2)))

        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = upsample_initial_channel//(2**(i+1))
            for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
                self.resblocks.append(resblock(ch, k, d))

        self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
        self.ups.apply(init_weights)

        if gin_channels != 0:
            self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)

    def forward(self, x, g=None):
        x = self.conv_pre(x)
        if g is not None:
          x = x + self.cond(g)

        for i in range(self.num_upsamples):
            x = F.leaky_relu(x, modules.LRELU_SLOPE)
            x = self.ups[i](x)
            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i*self.num_kernels+j](x)
                else:
                    xs += self.resblocks[i*self.num_kernels+j](x)
            x = xs / self.num_kernels
        x = F.leaky_relu(x)
        x = self.conv_post(x)
        x = torch.tanh(x)

        return x

    def remove_weight_norm(self):
        print('Removing weight norm...')
        for l in self.ups:
            remove_weight_norm(l)
        for l in self.resblocks:
            l.remove_weight_norm()


class SynthesizerTrn(nn.Module):
  """
  Synthesizer for Training
  """

  def __init__(self, 
    n_vocab,
    spec_channels,
    segment_size,
    inter_channels,
    hidden_channels,
    filter_channels,
    n_heads,
    n_layers,
    kernel_size,
    p_dropout,
    resblock, 
    resblock_kernel_sizes, 
    resblock_dilation_sizes, 
    upsample_rates, 
    upsample_initial_channel, 
    upsample_kernel_sizes,
    n_speakers=0,
    gin_channels=0,
    use_sdp=True,
    **kwargs):

    super().__init__()
    self.n_vocab = n_vocab
    self.spec_channels = spec_channels
    self.inter_channels = inter_channels
    self.hidden_channels = hidden_channels
    self.filter_channels = filter_channels
    self.n_heads = n_heads
    self.n_layers = n_layers
    self.kernel_size = kernel_size
    self.p_dropout = p_dropout
    self.resblock = resblock
    self.resblock_kernel_sizes = resblock_kernel_sizes
    self.resblock_dilation_sizes = resblock_dilation_sizes
    self.upsample_rates = upsample_rates
    self.upsample_initial_channel = upsample_initial_channel
    self.upsample_kernel_sizes = upsample_kernel_sizes
    self.segment_size = segment_size
    self.n_speakers = n_speakers
    self.gin_channels = gin_channels

    self.use_sdp = use_sdp

    self.enc_p = TextEncoder(n_vocab,
        inter_channels,
        hidden_channels,
        filter_channels,
        n_heads,
        n_layers,
        kernel_size,
        p_dropout)
    self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
    
    self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)

    if use_sdp:
      # raise ValueError
      self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
    else:
      raise ValueError
      # self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)

    if n_speakers > 1:
      self.emb_g = nn.Embedding(n_speakers, gin_channels)

  def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
    x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
    if self.n_speakers > 0:
      g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
    else:
      g = None

    if self.use_sdp:
      logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
    else:
      logw = self.dp(x, x_mask, g=g)
    w = torch.exp(logw) * x_mask * length_scale
    w_ceil = torch.ceil(w)
    y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
    y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
    attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
    attn = commons.generate_path(w_ceil, attn_mask)

    m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
    logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']

    z_p = m_p + torch.zeros_like(m_p) * torch.exp(logs_p)#* noise_scale
    z = self.flow(z_p, y_mask, g=g, reverse=True)
    o = self.dec((z * y_mask)[:,:,:max_len], g=g)
    return o, attn, y_mask, (z, z_p, m_p, logs_p)