File size: 28,575 Bytes
38f0a43 477195e 38f0a43 d8edfa5 477195e c7362aa 477195e cf02fb0 477195e cf02fb0 477195e c7362aa 477195e c7362aa 477195e cf02fb0 477195e c7362aa 477195e c7362aa 477195e cf02fb0 477195e cf02fb0 477195e c7362aa 477195e c7362aa 477195e cf02fb0 477195e 38f0a43 477195e c7362aa 477195e 38f0a43 477195e cf02fb0 477195e c7362aa 477195e cf02fb0 477195e c7362aa 477195e c7362aa 477195e cf02fb0 477195e cf02fb0 477195e c7362aa 477195e cf02fb0 477195e d8edfa5 c7362aa d8edfa5 c7362aa 477195e cf02fb0 477195e d8edfa5 477195e cf02fb0 477195e c7362aa 477195e cf02fb0 477195e c7362aa 477195e c7362aa 477195e cf02fb0 477195e c7362aa 477195e cf02fb0 477195e c7362aa cf02fb0 c7362aa d8edfa5 477195e c7362aa 477195e c7362aa 477195e cf02fb0 477195e d8edfa5 477195e c7362aa 477195e c7362aa 477195e c7362aa 477195e cf02fb0 477195e d8edfa5 477195e d8edfa5 c7362aa d8edfa5 477195e c7362aa 477195e c7362aa 477195e c7362aa 477195e c7362aa 477195e c7362aa 477195e c7362aa 477195e c7362aa 477195e c7362aa 477195e c7362aa 477195e c7362aa 477195e c7362aa 477195e c7362aa 477195e c7362aa 477195e c7362aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
import math
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
from transformers.modeling_outputs import BaseModelOutput, ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_utils import PretrainedConfig
import json
import os
import re
from typing import Any, Dict, List, Optional, Tuple
from transformers.tokenization_utils import PreTrainedTokenizer
import phonemizer
import uroman as ur
import torch.nn.functional as F
def has_non_roman_characters(input_string):
# Find any character outside the ASCII range
non_roman_pattern = re.compile(r"[^\x00-\x7F]")
# Search the input string for non-Roman characters
match = non_roman_pattern.search(input_string)
has_non_roman = match is not None
return has_non_roman
class VitsConfig(PretrainedConfig):
model_type = "vits"
def __init__(
self,
vocab_size=38,
hidden_size=192,
num_hidden_layers=6,
num_attention_heads=2,
window_size=4,
use_bias=True,
ffn_dim=768,
layerdrop=0.1,
ffn_kernel_size=3,
flow_size=192,
spectrogram_bins=513,
# hidden_act="relu",
hidden_dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_stochastic_duration_prediction=True,
num_speakers=1,
speaker_embedding_size=0,
upsample_initial_channel=512,
upsample_rates=[8, 8, 2, 2],
upsample_kernel_sizes=[16, 16, 4, 4],
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
leaky_relu_slope=0.1,
depth_separable_channels=2,
depth_separable_num_layers=3,
duration_predictor_flow_bins=10,
duration_predictor_tail_bound=5.0,
duration_predictor_kernel_size=3,
duration_predictor_dropout=0.5,
duration_predictor_num_flows=4,
duration_predictor_filter_channels=256,
prior_encoder_num_flows=4,
prior_encoder_num_wavenet_layers=4,
posterior_encoder_num_wavenet_layers=16,
wavenet_kernel_size=5,
wavenet_dilation_rate=1,
wavenet_dropout=0.0,
speaking_rate=1.0, # unused
noise_scale=0.667,
noise_scale_duration=0.8,
sampling_rate=16_000,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.window_size = window_size
self.use_bias = use_bias
self.ffn_dim = ffn_dim
self.layerdrop = layerdrop
self.ffn_kernel_size = ffn_kernel_size
self.flow_size = flow_size
self.spectrogram_bins = spectrogram_bins
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
# self.use_stochastic_duration_prediction = use_stochastic_duration_prediction
self.num_speakers = num_speakers
self.speaker_embedding_size = speaker_embedding_size
self.upsample_initial_channel = upsample_initial_channel
self.upsample_rates = upsample_rates
self.upsample_kernel_sizes = upsample_kernel_sizes
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.leaky_relu_slope = leaky_relu_slope
self.depth_separable_channels = depth_separable_channels
self.depth_separable_num_layers = depth_separable_num_layers
self.duration_predictor_flow_bins = duration_predictor_flow_bins
self.duration_predictor_tail_bound = duration_predictor_tail_bound
self.duration_predictor_kernel_size = duration_predictor_kernel_size
self.duration_predictor_num_flows = duration_predictor_num_flows
self.duration_predictor_filter_channels = duration_predictor_filter_channels
self.prior_encoder_num_flows = prior_encoder_num_flows
self.prior_encoder_num_wavenet_layers = prior_encoder_num_wavenet_layers
self.posterior_encoder_num_wavenet_layers = posterior_encoder_num_wavenet_layers
self.wavenet_kernel_size = wavenet_kernel_size
self.wavenet_dilation_rate = wavenet_dilation_rate
self.noise_scale = noise_scale
self.noise_scale_duration = noise_scale_duration
self.sampling_rate = sampling_rate
if len(upsample_kernel_sizes) != len(upsample_rates):
raise ValueError(
f"The length of `upsample_kernel_sizes` ({len(upsample_kernel_sizes)}) must match the length of "
f"`upsample_rates` ({len(upsample_rates)})"
)
super().__init__(**kwargs)
@dataclass
class VitsTextEncoderOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None
prior_means: torch.FloatTensor = None
prior_log_variances: torch.FloatTensor = None
hidden_states: torch.FloatTensor = None
attentions: torch.FloatTensor = None
class VitsWaveNet(torch.nn.Module):
def __init__(self, config, num_layers):
super().__init__()
self.hidden_size = config.hidden_size
self.num_layers = num_layers
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
# if hasattr(nn.utils.parametrizations, "weight_norm"):
# # raise ValueError
weight_norm = nn.utils.parametrizations.weight_norm
# else:
# raise ValueError
# # weight_norm = nn.utils.weight_norm
for i in range(num_layers):
dilation = config.wavenet_dilation_rate**i
padding = (config.wavenet_kernel_size * dilation - dilation) // 2
in_layer = torch.nn.Conv1d(
in_channels=config.hidden_size,
out_channels=2 * config.hidden_size,
kernel_size=config.wavenet_kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer)
# last one is not necessary
if i < num_layers - 1:
res_skip_channels = 2 * config.hidden_size
else:
res_skip_channels = config.hidden_size
res_skip_layer = torch.nn.Conv1d(config.hidden_size, res_skip_channels, 1)
res_skip_layer = weight_norm(res_skip_layer, name="weight")
self.res_skip_layers.append(res_skip_layer)
def forward(self,
inputs):
outputs = torch.zeros_like(inputs)
num_channels = torch.IntTensor([self.hidden_size])[0]
for i in range(self.num_layers):
in_act = self.in_layers[i](inputs)
# global_states = torch.zeros_like(hidden_states) # style ?
# acts = fused_add_tanh_sigmoid_multiply(hidden_states, global_states, num_channels_tensor[0])
# --
# def fused_add_tanh_sigmoid_multiply(input_a, input_b, num_channels):
# in_act = input_a # + input_b
t_act = torch.tanh(in_act[:, :num_channels, :])
s_act = torch.sigmoid(in_act[:, num_channels:, :])
acts = t_act * s_act
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.num_layers - 1:
res_acts = res_skip_acts[:, : self.hidden_size, :]
inputs = inputs + res_acts
outputs = outputs + res_skip_acts[:, self.hidden_size :, :]
else:
outputs = outputs + res_skip_acts
return outputs
# Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock
class HifiGanResidualBlock(nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
super().__init__()
self.leaky_relu_slope = leaky_relu_slope
self.convs1 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=dilation[i],
padding=self.get_padding(kernel_size, dilation[i]),
)
for i in range(len(dilation))
]
)
self.convs2 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
for _ in range(len(dilation))
]
)
def get_padding(self, kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
def forward(self, hidden_states):
for conv1, conv2 in zip(self.convs1, self.convs2):
residual = hidden_states
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv1(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv2(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
class VitsHifiGan(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.num_kernels = len(config.resblock_kernel_sizes)
self.num_upsamples = len(config.upsample_rates)
self.conv_pre = nn.Conv1d(
config.flow_size,
config.upsample_initial_channel,
kernel_size=7,
stride=1,
padding=3,
)
self.upsampler = nn.ModuleList()
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
self.upsampler.append(
nn.ConvTranspose1d(
config.upsample_initial_channel // (2**i),
config.upsample_initial_channel // (2 ** (i + 1)),
kernel_size=kernel_size,
stride=upsample_rate,
padding=(kernel_size - upsample_rate) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.upsampler)):
channels = config.upsample_initial_channel // (2 ** (i + 1))
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3, bias=False)
def forward(self,
spectrogram):
hidden_states = self.conv_pre(spectrogram)
for i in range(self.num_upsamples):
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope)
hidden_states = self.upsampler[i](hidden_states)
res_state = self.resblocks[i * self.num_kernels](hidden_states)
for j in range(1, self.num_kernels):
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
hidden_states = res_state / self.num_kernels
hidden_states = nn.functional.leaky_relu(hidden_states)
hidden_states = self.conv_post(hidden_states)
waveform = torch.tanh(hidden_states)
return waveform
class VitsResidualCouplingLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.half_channels = config.flow_size // 2
self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1)
self.wavenet = VitsWaveNet(config, num_layers=config.prior_encoder_num_wavenet_layers)
self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1)
def forward(self,
x,
reverse=False):
first_half, second_half = torch.split(x, [self.half_channels] * 2, dim=1)
hidden_states = self.conv_pre(first_half)
hidden_states = self.wavenet(hidden_states)
mean = self.conv_post(hidden_states)
second_half = (second_half - mean)
outputs = torch.cat([first_half, second_half], dim=1)
return outputs
class VitsResidualCouplingBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.flows = nn.ModuleList()
for _ in range(config.prior_encoder_num_flows):
self.flows.append(VitsResidualCouplingLayer(config))
def forward(self, x, reverse=False):
# x L [1, 192, 481]
for flow in reversed(self.flows):
x = torch.flip(x, [1]) # flipud CHANNELs
x = flow(x, reverse=True)
return x
class VitsAttention(nn.Module):
"""has no positional info"""
def __init__(self, config):
super().__init__()
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.window_size = config.window_size
self.head_dim = self.embed_dim // self.num_heads
self.scaling = self.head_dim**-0.5
if (self.head_dim * self.num_heads) != self.embed_dim:
raise ValueError
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
def _shape(self, tensor, seq_len, bsz):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states,
layer_head_mask = None,
output_attentions = False,
):
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.bmm(attn_weights,
value_states)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None #attn_weights_reshaped
class VitsFeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.conv_1 = nn.Conv1d(config.hidden_size, config.ffn_dim, config.ffn_kernel_size)
self.conv_2 = nn.Conv1d(config.ffn_dim, config.hidden_size, config.ffn_kernel_size)
self.act_fn = nn.ReLU()
if config.ffn_kernel_size > 1:
pad_left = (config.ffn_kernel_size - 1) // 2
pad_right = config.ffn_kernel_size // 2
self.padding = [pad_left, pad_right, 0, 0, 0, 0]
else:
self.padding = None
def forward(self, hidden_states):
hidden_states = hidden_states.permute(0, 2, 1)
if self.padding is not None:
hidden_states = nn.functional.pad(hidden_states, self.padding)
hidden_states = self.conv_1(hidden_states)
hidden_states = self.act_fn(hidden_states)
if self.padding is not None:
hidden_states = nn.functional.pad(hidden_states, self.padding)
hidden_states = self.conv_2(hidden_states)
hidden_states = hidden_states.permute(0, 2, 1)
return hidden_states
class VitsEncoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = VitsAttention(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = VitsFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states,
output_attentions = False,
):
residual = hidden_states
hidden_states, attn_weights = self.attention(
hidden_states=hidden_states,
# attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.layer_norm(residual + hidden_states)
residual = hidden_states
hidden_states = self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(residual + hidden_states)
outputs = (hidden_states,)
return outputs
class VitsEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layers = nn.ModuleList([VitsEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self.layerdrop = config.layerdrop
def forward(
self,
hidden_states,
output_attentions = None,
output_hidden_states = None,
return_dict = None,
):
for _layer in self.layers:
layer_outputs = _layer(hidden_states)
hidden_states = layer_outputs[0]
return BaseModelOutput(
last_hidden_state=hidden_states,
# hidden_states=all_hidden_states,
# attentions=all_self_attentions,
)
class VitsTextEncoder(nn.Module):
"""
Has VitsEncoder
"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.encoder = VitsEncoder(config) # 6 Layers of VitsAttention
self.project = nn.Conv1d(config.hidden_size, config.flow_size * 2, kernel_size=1)
def forward(self,
input_ids
):
hidden_states = self.embed_tokens(input_ids) * math.sqrt(self.config.hidden_size)
last_hidden_state = self.encoder(hidden_states=hidden_states).last_hidden_state
stats = self.project(last_hidden_state.transpose(1, 2)).transpose(1, 2)
prior_means, prior_log_variances = torch.split(stats, self.config.flow_size, dim=2)
return VitsTextEncoderOutput(
last_hidden_state=last_hidden_state,
prior_means=prior_means,
# prior_log_variances=prior_log_variances,
# hidden_states=encoder_outputs.hidden_states,
# attentions=encoder_outputs.attentions,
)
class VitsPreTrainedModel(PreTrainedModel):
config_class = VitsConfig
base_model_prefix = "vits"
main_input_name = "input_ids"
supports_gradient_checkpointing = True
class VitsModel(VitsPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.text_encoder = VitsTextEncoder(config) # has VitsEncoder that includes 6L of VitsAttention
self.flow = VitsResidualCouplingBlock(config)
self.decoder = VitsHifiGan(config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids = None,
attention_mask = None,
speaker_id = None,
output_attentions = None,
output_hidden_states = None,
return_dict = None,
labels = None,
speed = None,
lang_code = 'deu', # speed oscillation pattern per voice/lang
):
mask_dtype = self.text_encoder.embed_tokens.weight.dtype
if attention_mask is not None:
input_padding_mask = attention_mask.unsqueeze(-1).to(mask_dtype)
else:
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).to(mask_dtype)
out = self.text_encoder(input_ids=input_ids)
hidden_states = out.last_hidden_state.transpose(1, 2)
input_padding_mask = input_padding_mask.transpose(1, 2)
prior_means = out.prior_means
bs, _, in_len = hidden_states.shape
# VITS Duration Oscillation
if lang_code == 'deu':
pattern = [1, 2, 1] # each voice (lang_code) sounds cooler with different pattern
elif lang_code == 'rmc-script_latin':
pattern = [2, 2, 1, 2, 2] # [2, 2, 2, 1, 2]
elif lang_code == 'hun':
# pattern = [1, 2, 2, 1, 1, 1] #sounds cool / has valley-pause
pattern = [1, 2, 1, 1, 1]
else:
pattern = [1, 2, 1]
duration = torch.tensor(pattern, device=hidden_states.device).repeat(int(in_len / len(pattern)) + 2)[None, None, :in_len] # perhaps define [1, 2, 1] per voice or language
duration[:, :, 0] = 4
duration[:, :, -1] = 3
# ATTN
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
batch_size, _, output_length, input_length = attn_mask.shape
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
valid_indices = indices.unsqueeze(0) < cum_duration
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
attn = attn[:, 0, :, :]
attn = attn + 1e-4 * torch.rand_like(attn)
attn /= attn.sum(2, keepdims=True)
#print(attn)
prior_means = torch.matmul(attn, prior_means) # try attn to contain .5/.5 instead of 1/0 so it smoothly interpolates repeated prior_means
#prior_means = F.interpolate(prior_means.transpose(1,2), int(1.74 * prior_means.shape[1]), mode='linear').transpose(1,2) # extend for slow speed
# prior means have now been replicated x duration of each prior mean
latents = self.flow(prior_means.transpose(1, 2), # + torch.randn_like(prior_means) * .94,
reverse=True)
waveform = self.decoder(latents) # [bs, 1, 16000]
return waveform[:, 0, :]
class VitsTokenizer(PreTrainedTokenizer):
vocab_files_names = {"vocab_file": "vocab.json"}
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
pad_token="<pad>",
unk_token="<unk>",
language=None,
add_blank=True,
normalize=True,
phonemize=True,
is_uroman=False,
**kwargs,
) -> None:
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.language = language
self.add_blank = add_blank
self.normalize = normalize
self.phonemize = phonemize
self.is_uroman = is_uroman
super().__init__(
pad_token=pad_token,
unk_token=unk_token,
language=language,
add_blank=add_blank,
normalize=normalize,
phonemize=phonemize,
is_uroman=is_uroman,
**kwargs,
)
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def normalize_text(self, input_string):
"""Lowercase the input string, respecting any special token ids that may be part or entirely upper-cased."""
all_vocabulary = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys())
filtered_text = ""
i = 0
while i < len(input_string):
found_match = False
for word in all_vocabulary:
if input_string[i : i + len(word)] == word:
filtered_text += word
i += len(word)
found_match = True
break
if not found_match:
filtered_text += input_string[i].lower()
i += 1
return filtered_text
def _preprocess_char(self, text):
"""Special treatment of characters in certain languages"""
if self.language == "ron":
text = text.replace("ț", "ţ")
return text
def prepare_for_tokenization(
self, text: str, is_split_into_words: bool = False, normalize = None, **kwargs):
normalize = normalize if normalize is not None else self.normalize
if normalize:
# normalise for casing
text = self.normalize_text(text)
filtered_text = self._preprocess_char(text)
if has_non_roman_characters(filtered_text) and self.is_uroman:
if not is_uroman_available():
print(
"Text to the tokenizer contains non-Roman characters. To apply the `uroman` pre-processing "
"step automatically, ensure the `uroman` Romanizer is installed with: `pip install uroman` "
"Note `uroman` requires python version >= 3.10"
"Otherwise, apply the Romanizer manually as per the instructions: https://github.com/isi-nlp/uroman"
)
else:
uroman = ur.Uroman()
filtered_text = uroman.romanize_string(filtered_text)
if self.phonemize:
if not is_phonemizer_available():
raise ImportError("Please install the `phonemizer` Python package to use this tokenizer.")
filtered_text = phonemizer.phonemize(
filtered_text,
language="en-us",
backend="espeak",
strip=True,
preserve_punctuation=True,
with_stress=True,
)
filtered_text = re.sub(r"\s+", " ", filtered_text)
elif normalize:
# strip any chars outside of the vocab (punctuation)
filtered_text = "".join(list(filter(lambda char: char in self.encoder, filtered_text))).strip()
return filtered_text, kwargs
def _tokenize(self, text: str) -> List[str]:
"""Tokenize a string by inserting the `<pad>` token at the boundary between adjacent characters."""
tokens = list(text)
if self.add_blank:
# sounds dyslexi if no space between letters
# sounds disconnected if >2 spaces between letters
interspersed = [self._convert_id_to_token(0)] * (len(tokens) * 2) # + 1) # +1 rises slice index error if tokens odd
interspersed[::2] = tokens
tokens = interspersed + [self._convert_id_to_token(0)] # append one last space (it has indexing error ::2 mismatch if tokens is odd)
return tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
|