File size: 12,053 Bytes
f7fd0c3
a032fce
f7fd0c3
 
 
 
 
 
 
 
a032fce
 
 
 
f7fd0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a032fce
 
 
f7fd0c3
 
 
 
 
 
 
 
 
 
a032fce
 
 
 
 
f7fd0c3
 
a032fce
f7fd0c3
 
 
 
 
 
 
 
 
a032fce
 
f7fd0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
a032fce
f7fd0c3
 
 
 
a032fce
 
 
f7fd0c3
 
 
 
 
 
 
 
 
 
a032fce
f7fd0c3
 
 
 
 
 
 
 
a032fce
f7fd0c3
 
 
 
 
 
 
52c4e0a
 
 
f7fd0c3
 
a032fce
 
 
f7fd0c3
 
 
 
a032fce
f7fd0c3
 
 
a032fce
f7fd0c3
 
 
 
a032fce
f7fd0c3
 
 
 
52c4e0a
 
 
 
 
 
 
 
 
f7fd0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a032fce
 
 
f7fd0c3
 
 
a032fce
 
 
f7fd0c3
 
 
 
6a0b5fd
f7fd0c3
 
 
a032fce
f7fd0c3
 
 
a032fce
f7fd0c3
 
a032fce
 
f7fd0c3
 
 
 
 
 
 
 
 
 
 
a032fce
6a0b5fd
a032fce
 
f7fd0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a0b5fd
f7fd0c3
 
6a0b5fd
a032fce
6a0b5fd
 
f7fd0c3
6a0b5fd
 
f7fd0c3
 
 
6a0b5fd
f7fd0c3
 
a032fce
 
 
f7fd0c3
 
 
 
 
 
 
 
 
 
 
a032fce
f7fd0c3
a032fce
6a0b5fd
f7fd0c3
 
 
6a0b5fd
 
 
f7fd0c3
 
 
 
 
 
a032fce
 
 
 
 
f7fd0c3
 
 
 
 
 
 
 
 
 
 
 
a032fce
f7fd0c3
a032fce
 
 
 
6a0b5fd
a032fce
 
f7fd0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a0b5fd
a032fce
 
f7fd0c3
 
a032fce
 
 
f7fd0c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from math import floor, log, pi
import torch.nn.functional as F
import torch
import torch.nn as nn
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange
from einops_exts import rearrange_many
from torch import Tensor, einsum


def default(val, d):
    if val is not None: #exists(val):
        return val
    return d # d() if isfunction(d) else d

class AdaLayerNorm(nn.Module):
    def __init__(self, style_dim, channels, eps=1e-5):
        super().__init__()
        self.channels = channels
        self.eps = eps

        self.fc = nn.Linear(style_dim, channels*2)

    def forward(self, x, s):
        x = x.transpose(-1, -2)
        x = x.transpose(1, -1)
                
        h = self.fc(s)
        h = h.view(h.size(0), h.size(1), 1)
        gamma, beta = torch.chunk(h, chunks=2, dim=1)
        gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
        
        
        x = F.layer_norm(x, (self.channels,), eps=self.eps)
        x = (1 + gamma) * x + beta
        return x.transpose(1, -1).transpose(-1, -2)

class StyleTransformer1d(nn.Module):
    
    # artificial_stylets / models.py
    
    def __init__(
        self,
        num_layers: int,
        channels: int,
        num_heads: int,
        head_features: int,
        multiplier: int,
        use_context_time: bool = True,
        use_rel_pos: bool = False,
        context_features_multiplier: int = 1,
        # rel_pos_num_buckets: Optional[int] = None,
        # rel_pos_max_distance: Optional[int] = None,
        context_features=None,
        context_embedding_features=None,
        embedding_max_length=512,
    ):
        super().__init__()
        
        self.blocks = nn.ModuleList(
            [
                StyleTransformerBlock(
                    features=channels + context_embedding_features,
                    head_features=head_features,
                    num_heads=num_heads,
                    multiplier=multiplier,
                    style_dim=context_features,
                    use_rel_pos=use_rel_pos,
                    # rel_pos_num_buckets=rel_pos_num_buckets,
                    # rel_pos_max_distance=rel_pos_max_distance,
                )
                for i in range(num_layers)
            ]
        )

        self.to_out = nn.Sequential(
            Rearrange("b t c -> b c t"),
            nn.Conv1d(
                in_channels=channels + context_embedding_features,
                out_channels=channels,
                kernel_size=1,
            ),
        )
        
        use_context_features = context_features is not None
        self.use_context_features = use_context_features
        self.use_context_time = use_context_time

        if use_context_time or use_context_features:
            # print(f'{use_context_time=} {use_context_features=}ooooooooooooooooooooooooooooooooooo')
            # raise ValueError
            # True True  both context
            context_mapping_features = channels + context_embedding_features

            self.to_mapping = nn.Sequential(
                nn.Linear(context_mapping_features, context_mapping_features),
                nn.GELU(),
                nn.Linear(context_mapping_features, context_mapping_features),
                nn.GELU(),
            )
        
        if use_context_time:
            
            self.to_time = nn.Sequential(
                TimePositionalEmbedding(
                    dim=channels, out_features=context_mapping_features
                ),
                nn.GELU(),
            )

        if use_context_features:
            
            self.to_features = nn.Sequential(
                nn.Linear(
                    in_features=context_features, out_features=context_mapping_features
                ),
                nn.GELU(),
            )
            
        # self.fixed_embedding = FixedEmbedding(
        #     max_length=embedding_max_length, features=context_embedding_features
        # )  # Non speker-aware LookUp: EMbedding looks just the time-frame-index [0,1,2...,num-asr-time-frames]

    def get_mapping(
        self, 
        time=None,
        features=None):
        """Combines context time features and features into mapping"""
        items, mapping = [], None
        # Compute time features
        if self.use_context_time:

            items += [self.to_time(time)]
        # Compute features
        if self.use_context_features:

            items += [self.to_features(features)]

        # Compute joint mapping
        if self.use_context_time or self.use_context_features:
            # raise ValueError
            mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
            mapping = self.to_mapping(mapping)

        return mapping
        
    def forward(self, 
                x, 
                time,
                embedding= None, 
                features = None):

        # -- 
                # called by forward()
        
        mapping = self.get_mapping(time, features)
        x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
        mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
        for block in self.blocks:
            x = x + mapping
            x = block(x, features)
        x = x.mean(axis=1).unsqueeze(1)
        x = self.to_out(x)
        x = x.transpose(-1, -2)
        return x


class StyleTransformerBlock(nn.Module):
    def __init__(
        self,
        features: int,
        num_heads: int,
        head_features: int,
        style_dim: int,
        multiplier: int,
        use_rel_pos: bool,
        # rel_pos_num_buckets: Optional[int] = None,
        # rel_pos_max_distance: Optional[int] = None,
        context_features = None,
    ):
        super().__init__()

        self.use_cross_attention = (context_features is not None) and (context_features > 0)
        # print(f'{rel_pos_num_buckets=} {rel_pos_max_distance=}')  # None None
        # raise ValueError
        self.attention = StyleAttention(
            features=features,
            style_dim=style_dim,
            num_heads=num_heads,
            head_features=head_features
        )

        if self.use_cross_attention:
            raise ValueError

        self.feed_forward = FeedForward(features=features, multiplier=multiplier)

    def forward(self, x: Tensor, s: Tensor, *, context = None) -> Tensor:
        x = self.attention(x, s) + x
        if self.use_cross_attention:
            raise ValueError
            # x = self.cross_attention(x, s, context=context) + x
        x = self.feed_forward(x) + x
        return x

class StyleAttention(nn.Module):
    def __init__(
        self,
        features: int,
        *,
        style_dim: int,
        head_features: int,
        num_heads: int,
        context_features = None,
        # use_rel_pos: bool,
        # rel_pos_num_buckets: Optional[int] = None,
        # rel_pos_max_distance: Optional[int] = None,
    ):
        super().__init__()
        self.context_features = context_features
        mid_features = head_features * num_heads
        context_features = default(context_features, features)

        self.norm = AdaLayerNorm(style_dim, features)
        self.norm_context = AdaLayerNorm(style_dim, context_features)
        self.to_q = nn.Linear(
            in_features=features, out_features=mid_features, bias=False
        )
        self.to_kv = nn.Linear(
            in_features=context_features, out_features=mid_features * 2, bias=False
        )
        self.attention = AttentionBase(
            features,
            num_heads=num_heads,
            head_features=head_features
        )

    def forward(self, x, s, *, context = None):
        
        if context is not None:
            raise ValueError
        context = default(context, x)
        
        
        x, context = self.norm(x, s), self.norm_context(context, s)
        
        q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
        
        return self.attention(q, k, v)


def FeedForward(features, 
                multiplier):
    mid_features = features * multiplier
    return nn.Sequential(
        nn.Linear(in_features=features, out_features=mid_features),
        nn.GELU(),
        nn.Linear(in_features=mid_features, out_features=features),
    )


class AttentionBase(nn.Module):
    def __init__(
        self,
        features,
        *,
        head_features,
        num_heads):
        super().__init__()
        self.scale = head_features ** -0.5
        self.num_heads = num_heads
        mid_features = head_features * num_heads            
        self.to_out = nn.Linear(in_features=mid_features, 
                                out_features=features)

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        # Split heads
        q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads)
        # Compute similarity matrix
        sim = einsum("... n d, ... m d -> ... n m", q, k)
        
        #                     _____THERE_IS_NO_rel_po
        # sim = (sim + self.rel_pos(*sim.shape[-2:])) if self.use_rel_pos else sim
        # print(self.rel_pos)
        
        sim = sim * self.scale
        # Get attention matrix with softmax
        attn = sim.softmax(dim=-1)
        # Compute values
        out = einsum("... n m, ... m d -> ... n d", attn, v)
        out = rearrange(out, "b h n d -> b n (h d)")
        return self.to_out(out)


class Attention(nn.Module):
    def __init__(
        self,
        features,
        *,
        head_features,
        num_heads,
        out_features=None,
        context_features=None,
        # use_rel_pos,
        # rel_pos_num_buckets: Optional[int] = None,
        # rel_pos_max_distance: Optional[int] = None,
    ):
        super().__init__()
        self.context_features = context_features
        mid_features = head_features * num_heads
        context_features = default(context_features, features)

        self.norm = nn.LayerNorm(features)
        self.norm_context = nn.LayerNorm(context_features)
        self.to_q = nn.Linear(
            in_features=features, out_features=mid_features, bias=False
        )
        self.to_kv = nn.Linear(
            in_features=context_features, out_features=mid_features * 2, bias=False
        )

        self.attention = AttentionBase(
            features,
            out_features=out_features,
            num_heads=num_heads,
            head_features=head_features,
            # use_rel_pos=use_rel_pos,
            # rel_pos_num_buckets=rel_pos_num_buckets,
            # rel_pos_max_distance=rel_pos_max_distance,
        )

    def forward(self, x: Tensor, *, context = None) -> Tensor:
        # assert_message = "You must provide a context when using context_features"
        # assert not self.context_features or exists(context), assert_message
        # Use context if provided
        context = default(context, x)
        # Normalize then compute q from input and k,v from context
        x, context = self.norm(x), self.norm_context(context)
        q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
        # Compute and return attention
        return self.attention(q, k, v)


class LearnedPositionalEmbedding(nn.Module):
    """Used for continuous time"""

    def __init__(self, dim: int):
        super().__init__()
        assert (dim % 2) == 0
        half_dim = dim // 2
        self.weights = nn.Parameter(torch.randn(half_dim))

    def forward(self, x: Tensor) -> Tensor:
        x = rearrange(x, "b -> b 1")
        freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
        fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
        fouriered = torch.cat((x, fouriered), dim=-1)
        return fouriered


def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
    return nn.Sequential(
        LearnedPositionalEmbedding(dim),
        nn.Linear(in_features=dim + 1, out_features=out_features),
    )