File size: 12,053 Bytes
f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 52c4e0a f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 52c4e0a f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 6a0b5fd f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce 6a0b5fd a032fce f7fd0c3 6a0b5fd f7fd0c3 6a0b5fd a032fce 6a0b5fd f7fd0c3 6a0b5fd f7fd0c3 6a0b5fd f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce 6a0b5fd f7fd0c3 6a0b5fd f7fd0c3 a032fce f7fd0c3 a032fce f7fd0c3 a032fce 6a0b5fd a032fce f7fd0c3 6a0b5fd a032fce f7fd0c3 a032fce f7fd0c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
from math import floor, log, pi
import torch.nn.functional as F
import torch
import torch.nn as nn
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange
from einops_exts import rearrange_many
from torch import Tensor, einsum
def default(val, d):
if val is not None: #exists(val):
return val
return d # d() if isfunction(d) else d
class AdaLayerNorm(nn.Module):
def __init__(self, style_dim, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.fc = nn.Linear(style_dim, channels*2)
def forward(self, x, s):
x = x.transpose(-1, -2)
x = x.transpose(1, -1)
h = self.fc(s)
h = h.view(h.size(0), h.size(1), 1)
gamma, beta = torch.chunk(h, chunks=2, dim=1)
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), eps=self.eps)
x = (1 + gamma) * x + beta
return x.transpose(1, -1).transpose(-1, -2)
class StyleTransformer1d(nn.Module):
# artificial_stylets / models.py
def __init__(
self,
num_layers: int,
channels: int,
num_heads: int,
head_features: int,
multiplier: int,
use_context_time: bool = True,
use_rel_pos: bool = False,
context_features_multiplier: int = 1,
# rel_pos_num_buckets: Optional[int] = None,
# rel_pos_max_distance: Optional[int] = None,
context_features=None,
context_embedding_features=None,
embedding_max_length=512,
):
super().__init__()
self.blocks = nn.ModuleList(
[
StyleTransformerBlock(
features=channels + context_embedding_features,
head_features=head_features,
num_heads=num_heads,
multiplier=multiplier,
style_dim=context_features,
use_rel_pos=use_rel_pos,
# rel_pos_num_buckets=rel_pos_num_buckets,
# rel_pos_max_distance=rel_pos_max_distance,
)
for i in range(num_layers)
]
)
self.to_out = nn.Sequential(
Rearrange("b t c -> b c t"),
nn.Conv1d(
in_channels=channels + context_embedding_features,
out_channels=channels,
kernel_size=1,
),
)
use_context_features = context_features is not None
self.use_context_features = use_context_features
self.use_context_time = use_context_time
if use_context_time or use_context_features:
# print(f'{use_context_time=} {use_context_features=}ooooooooooooooooooooooooooooooooooo')
# raise ValueError
# True True both context
context_mapping_features = channels + context_embedding_features
self.to_mapping = nn.Sequential(
nn.Linear(context_mapping_features, context_mapping_features),
nn.GELU(),
nn.Linear(context_mapping_features, context_mapping_features),
nn.GELU(),
)
if use_context_time:
self.to_time = nn.Sequential(
TimePositionalEmbedding(
dim=channels, out_features=context_mapping_features
),
nn.GELU(),
)
if use_context_features:
self.to_features = nn.Sequential(
nn.Linear(
in_features=context_features, out_features=context_mapping_features
),
nn.GELU(),
)
# self.fixed_embedding = FixedEmbedding(
# max_length=embedding_max_length, features=context_embedding_features
# ) # Non speker-aware LookUp: EMbedding looks just the time-frame-index [0,1,2...,num-asr-time-frames]
def get_mapping(
self,
time=None,
features=None):
"""Combines context time features and features into mapping"""
items, mapping = [], None
# Compute time features
if self.use_context_time:
items += [self.to_time(time)]
# Compute features
if self.use_context_features:
items += [self.to_features(features)]
# Compute joint mapping
if self.use_context_time or self.use_context_features:
# raise ValueError
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
mapping = self.to_mapping(mapping)
return mapping
def forward(self,
x,
time,
embedding= None,
features = None):
# --
# called by forward()
mapping = self.get_mapping(time, features)
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
for block in self.blocks:
x = x + mapping
x = block(x, features)
x = x.mean(axis=1).unsqueeze(1)
x = self.to_out(x)
x = x.transpose(-1, -2)
return x
class StyleTransformerBlock(nn.Module):
def __init__(
self,
features: int,
num_heads: int,
head_features: int,
style_dim: int,
multiplier: int,
use_rel_pos: bool,
# rel_pos_num_buckets: Optional[int] = None,
# rel_pos_max_distance: Optional[int] = None,
context_features = None,
):
super().__init__()
self.use_cross_attention = (context_features is not None) and (context_features > 0)
# print(f'{rel_pos_num_buckets=} {rel_pos_max_distance=}') # None None
# raise ValueError
self.attention = StyleAttention(
features=features,
style_dim=style_dim,
num_heads=num_heads,
head_features=head_features
)
if self.use_cross_attention:
raise ValueError
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
def forward(self, x: Tensor, s: Tensor, *, context = None) -> Tensor:
x = self.attention(x, s) + x
if self.use_cross_attention:
raise ValueError
# x = self.cross_attention(x, s, context=context) + x
x = self.feed_forward(x) + x
return x
class StyleAttention(nn.Module):
def __init__(
self,
features: int,
*,
style_dim: int,
head_features: int,
num_heads: int,
context_features = None,
# use_rel_pos: bool,
# rel_pos_num_buckets: Optional[int] = None,
# rel_pos_max_distance: Optional[int] = None,
):
super().__init__()
self.context_features = context_features
mid_features = head_features * num_heads
context_features = default(context_features, features)
self.norm = AdaLayerNorm(style_dim, features)
self.norm_context = AdaLayerNorm(style_dim, context_features)
self.to_q = nn.Linear(
in_features=features, out_features=mid_features, bias=False
)
self.to_kv = nn.Linear(
in_features=context_features, out_features=mid_features * 2, bias=False
)
self.attention = AttentionBase(
features,
num_heads=num_heads,
head_features=head_features
)
def forward(self, x, s, *, context = None):
if context is not None:
raise ValueError
context = default(context, x)
x, context = self.norm(x, s), self.norm_context(context, s)
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
return self.attention(q, k, v)
def FeedForward(features,
multiplier):
mid_features = features * multiplier
return nn.Sequential(
nn.Linear(in_features=features, out_features=mid_features),
nn.GELU(),
nn.Linear(in_features=mid_features, out_features=features),
)
class AttentionBase(nn.Module):
def __init__(
self,
features,
*,
head_features,
num_heads):
super().__init__()
self.scale = head_features ** -0.5
self.num_heads = num_heads
mid_features = head_features * num_heads
self.to_out = nn.Linear(in_features=mid_features,
out_features=features)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
# Split heads
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads)
# Compute similarity matrix
sim = einsum("... n d, ... m d -> ... n m", q, k)
# _____THERE_IS_NO_rel_po
# sim = (sim + self.rel_pos(*sim.shape[-2:])) if self.use_rel_pos else sim
# print(self.rel_pos)
sim = sim * self.scale
# Get attention matrix with softmax
attn = sim.softmax(dim=-1)
# Compute values
out = einsum("... n m, ... m d -> ... n d", attn, v)
out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)
class Attention(nn.Module):
def __init__(
self,
features,
*,
head_features,
num_heads,
out_features=None,
context_features=None,
# use_rel_pos,
# rel_pos_num_buckets: Optional[int] = None,
# rel_pos_max_distance: Optional[int] = None,
):
super().__init__()
self.context_features = context_features
mid_features = head_features * num_heads
context_features = default(context_features, features)
self.norm = nn.LayerNorm(features)
self.norm_context = nn.LayerNorm(context_features)
self.to_q = nn.Linear(
in_features=features, out_features=mid_features, bias=False
)
self.to_kv = nn.Linear(
in_features=context_features, out_features=mid_features * 2, bias=False
)
self.attention = AttentionBase(
features,
out_features=out_features,
num_heads=num_heads,
head_features=head_features,
# use_rel_pos=use_rel_pos,
# rel_pos_num_buckets=rel_pos_num_buckets,
# rel_pos_max_distance=rel_pos_max_distance,
)
def forward(self, x: Tensor, *, context = None) -> Tensor:
# assert_message = "You must provide a context when using context_features"
# assert not self.context_features or exists(context), assert_message
# Use context if provided
context = default(context, x)
# Normalize then compute q from input and k,v from context
x, context = self.norm(x), self.norm_context(context)
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
# Compute and return attention
return self.attention(q, k, v)
class LearnedPositionalEmbedding(nn.Module):
"""Used for continuous time"""
def __init__(self, dim: int):
super().__init__()
assert (dim % 2) == 0
half_dim = dim // 2
self.weights = nn.Parameter(torch.randn(half_dim))
def forward(self, x: Tensor) -> Tensor:
x = rearrange(x, "b -> b 1")
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
fouriered = torch.cat((x, fouriered), dim=-1)
return fouriered
def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
return nn.Sequential(
LearnedPositionalEmbedding(dim),
nn.Linear(in_features=dim + 1, out_features=out_features),
)
|