Upload config and modelling files
Browse files- config.json +10 -256
- configuration_gpt_optimized.py +22 -0
- modeling_gpt_optimized.py +189 -0
config.json
CHANGED
|
@@ -1,271 +1,25 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "distributed/optimized-gpt2-2b",
|
| 3 |
"activation_function": "gelu_new",
|
| 4 |
"all_reduce_scores": {
|
| 5 |
"0": "SUCCESS",
|
| 6 |
"1": "SUCCESS",
|
| 7 |
-
"10": "SUCCESS",
|
| 8 |
-
"100": "SUCCESS",
|
| 9 |
-
"101": "SUCCESS",
|
| 10 |
-
"102": "SUCCESS",
|
| 11 |
-
"103": "SUCCESS",
|
| 12 |
-
"104": "SUCCESS",
|
| 13 |
-
"105": "SUCCESS",
|
| 14 |
-
"106": "SUCCESS",
|
| 15 |
-
"107": "SUCCESS",
|
| 16 |
-
"108": "SUCCESS",
|
| 17 |
-
"109": "SUCCESS",
|
| 18 |
-
"11": "SUCCESS",
|
| 19 |
-
"110": "SUCCESS",
|
| 20 |
-
"111": "SUCCESS",
|
| 21 |
-
"112": "SUCCESS",
|
| 22 |
-
"113": "SUCCESS",
|
| 23 |
-
"114": "SUCCESS",
|
| 24 |
-
"115": "SUCCESS",
|
| 25 |
-
"116": "SUCCESS",
|
| 26 |
-
"117": "SUCCESS",
|
| 27 |
-
"118": "SUCCESS",
|
| 28 |
-
"119": "SUCCESS",
|
| 29 |
-
"12": "SUCCESS",
|
| 30 |
-
"120": "SUCCESS",
|
| 31 |
-
"121": "SUCCESS",
|
| 32 |
-
"122": "SUCCESS",
|
| 33 |
-
"123": "SUCCESS",
|
| 34 |
-
"124": "SUCCESS",
|
| 35 |
-
"125": "SUCCESS",
|
| 36 |
-
"126": "SUCCESS",
|
| 37 |
-
"127": "SUCCESS",
|
| 38 |
-
"128": "SUCCESS",
|
| 39 |
-
"129": "SUCCESS",
|
| 40 |
-
"13": "SUCCESS",
|
| 41 |
-
"130": "SUCCESS",
|
| 42 |
-
"131": "SUCCESS",
|
| 43 |
-
"132": "SUCCESS",
|
| 44 |
-
"133": "SUCCESS",
|
| 45 |
-
"134": "SUCCESS",
|
| 46 |
-
"135": "SUCCESS",
|
| 47 |
-
"136": "SUCCESS",
|
| 48 |
-
"137": "SUCCESS",
|
| 49 |
-
"138": "SUCCESS",
|
| 50 |
-
"139": "SUCCESS",
|
| 51 |
-
"14": "SUCCESS",
|
| 52 |
-
"140": "SUCCESS",
|
| 53 |
-
"141": "SUCCESS",
|
| 54 |
-
"142": "SUCCESS",
|
| 55 |
-
"143": "SUCCESS",
|
| 56 |
-
"144": "SUCCESS",
|
| 57 |
-
"145": "SUCCESS",
|
| 58 |
-
"146": "SUCCESS",
|
| 59 |
-
"147": "SUCCESS",
|
| 60 |
-
"148": "SUCCESS",
|
| 61 |
-
"149": "SUCCESS",
|
| 62 |
-
"15": "SUCCESS",
|
| 63 |
-
"150": "SUCCESS",
|
| 64 |
-
"151": "SUCCESS",
|
| 65 |
-
"152": "SUCCESS",
|
| 66 |
-
"153": "SUCCESS",
|
| 67 |
-
"154": "SUCCESS",
|
| 68 |
-
"155": "SUCCESS",
|
| 69 |
-
"156": "SUCCESS",
|
| 70 |
-
"157": "SUCCESS",
|
| 71 |
-
"158": "SUCCESS",
|
| 72 |
-
"159": "SUCCESS",
|
| 73 |
-
"16": "SUCCESS",
|
| 74 |
-
"160": "SUCCESS",
|
| 75 |
-
"161": "SUCCESS",
|
| 76 |
-
"162": "SUCCESS",
|
| 77 |
-
"163": "SUCCESS",
|
| 78 |
-
"164": "SUCCESS",
|
| 79 |
-
"165": "SUCCESS",
|
| 80 |
-
"166": "SUCCESS",
|
| 81 |
-
"167": "SUCCESS",
|
| 82 |
-
"168": "SUCCESS",
|
| 83 |
-
"169": "SUCCESS",
|
| 84 |
-
"17": "SUCCESS",
|
| 85 |
-
"170": "SUCCESS",
|
| 86 |
-
"171": "SUCCESS",
|
| 87 |
-
"172": "SUCCESS",
|
| 88 |
-
"173": "SUCCESS",
|
| 89 |
-
"174": "SUCCESS",
|
| 90 |
-
"175": "SUCCESS",
|
| 91 |
-
"176": "SUCCESS",
|
| 92 |
-
"177": "SUCCESS",
|
| 93 |
-
"178": "SUCCESS",
|
| 94 |
-
"179": "SUCCESS",
|
| 95 |
-
"18": "SUCCESS",
|
| 96 |
-
"180": "SUCCESS",
|
| 97 |
-
"181": "SUCCESS",
|
| 98 |
-
"182": "SUCCESS",
|
| 99 |
-
"183": "SUCCESS",
|
| 100 |
-
"184": "SUCCESS",
|
| 101 |
-
"185": "SUCCESS",
|
| 102 |
-
"186": "SUCCESS",
|
| 103 |
-
"187": "SUCCESS",
|
| 104 |
-
"188": "SUCCESS",
|
| 105 |
-
"189": "SUCCESS",
|
| 106 |
-
"19": "SUCCESS",
|
| 107 |
-
"190": "SUCCESS",
|
| 108 |
-
"191": "SUCCESS",
|
| 109 |
-
"192": "SUCCESS",
|
| 110 |
-
"193": "SUCCESS",
|
| 111 |
-
"194": "SUCCESS",
|
| 112 |
-
"195": "SUCCESS",
|
| 113 |
-
"196": "SUCCESS",
|
| 114 |
-
"197": "SUCCESS",
|
| 115 |
-
"198": "SUCCESS",
|
| 116 |
-
"199": "SUCCESS",
|
| 117 |
"2": "SUCCESS",
|
| 118 |
-
"
|
| 119 |
-
"
|
| 120 |
-
"
|
| 121 |
-
"
|
| 122 |
-
"
|
| 123 |
-
"
|
| 124 |
-
"
|
| 125 |
-
"206": "SUCCESS",
|
| 126 |
-
"207": "SUCCESS",
|
| 127 |
-
"208": "SUCCESS",
|
| 128 |
-
"209": "SUCCESS",
|
| 129 |
-
"21": "SUCCESS",
|
| 130 |
-
"210": "SUCCESS",
|
| 131 |
-
"211": "SUCCESS",
|
| 132 |
-
"212": "SUCCESS",
|
| 133 |
-
"213": "SUCCESS",
|
| 134 |
-
"214": "SUCCESS",
|
| 135 |
-
"215": "SUCCESS",
|
| 136 |
-
"216": "SUCCESS",
|
| 137 |
-
"217": "SUCCESS",
|
| 138 |
-
"218": "SUCCESS",
|
| 139 |
-
"219": "SUCCESS",
|
| 140 |
-
"22": "SUCCESS",
|
| 141 |
-
"220": "SUCCESS",
|
| 142 |
-
"221": "SUCCESS",
|
| 143 |
-
"222": "SUCCESS",
|
| 144 |
-
"223": "SUCCESS",
|
| 145 |
-
"224": "SUCCESS",
|
| 146 |
-
"225": "SUCCESS",
|
| 147 |
-
"226": "SUCCESS",
|
| 148 |
-
"227": "SUCCESS",
|
| 149 |
-
"228": "SUCCESS",
|
| 150 |
-
"229": "SUCCESS",
|
| 151 |
-
"23": "SUCCESS",
|
| 152 |
-
"230": "SUCCESS",
|
| 153 |
-
"231": "SUCCESS",
|
| 154 |
-
"232": "SUCCESS",
|
| 155 |
-
"233": "SUCCESS",
|
| 156 |
-
"234": "SUCCESS",
|
| 157 |
-
"235": "SUCCESS",
|
| 158 |
-
"236": "SUCCESS",
|
| 159 |
-
"237": "SUCCESS",
|
| 160 |
-
"238": "SUCCESS",
|
| 161 |
-
"239": "SUCCESS",
|
| 162 |
-
"24": "SUCCESS",
|
| 163 |
-
"240": "SUCCESS",
|
| 164 |
-
"241": "SUCCESS",
|
| 165 |
-
"242": "SUCCESS",
|
| 166 |
-
"243": "SUCCESS",
|
| 167 |
-
"244": "SUCCESS",
|
| 168 |
-
"245": "SUCCESS",
|
| 169 |
-
"246": "SUCCESS",
|
| 170 |
-
"247": "SUCCESS",
|
| 171 |
-
"248": "SUCCESS",
|
| 172 |
-
"249": "SUCCESS",
|
| 173 |
-
"25": "SUCCESS",
|
| 174 |
-
"250": "SUCCESS",
|
| 175 |
-
"251": "SUCCESS",
|
| 176 |
-
"252": "SUCCESS",
|
| 177 |
-
"253": "SUCCESS",
|
| 178 |
-
"254": "SUCCESS",
|
| 179 |
-
"255": "SUCCESS",
|
| 180 |
-
"26": "SUCCESS",
|
| 181 |
-
"27": "SUCCESS",
|
| 182 |
-
"28": "SUCCESS",
|
| 183 |
-
"29": "SUCCESS",
|
| 184 |
-
"3": "SUCCESS",
|
| 185 |
-
"30": "SUCCESS",
|
| 186 |
-
"31": "SUCCESS",
|
| 187 |
-
"32": "SUCCESS",
|
| 188 |
-
"33": "SUCCESS",
|
| 189 |
-
"34": "SUCCESS",
|
| 190 |
-
"35": "SUCCESS",
|
| 191 |
-
"36": "SUCCESS",
|
| 192 |
-
"37": "SUCCESS",
|
| 193 |
-
"38": "SUCCESS",
|
| 194 |
-
"39": "SUCCESS",
|
| 195 |
-
"4": "SUCCESS",
|
| 196 |
-
"40": "SUCCESS",
|
| 197 |
-
"41": "SUCCESS",
|
| 198 |
-
"42": "SUCCESS",
|
| 199 |
-
"43": "SUCCESS",
|
| 200 |
-
"44": "SUCCESS",
|
| 201 |
-
"45": "SUCCESS",
|
| 202 |
-
"46": "SUCCESS",
|
| 203 |
-
"47": "SUCCESS",
|
| 204 |
-
"48": "SUCCESS",
|
| 205 |
-
"49": "SUCCESS",
|
| 206 |
-
"5": "SUCCESS",
|
| 207 |
-
"50": "SUCCESS",
|
| 208 |
-
"51": "SUCCESS",
|
| 209 |
-
"52": "SUCCESS",
|
| 210 |
-
"53": "SUCCESS",
|
| 211 |
-
"54": "SUCCESS",
|
| 212 |
-
"55": "SUCCESS",
|
| 213 |
-
"56": "SUCCESS",
|
| 214 |
-
"57": "SUCCESS",
|
| 215 |
-
"58": "SUCCESS",
|
| 216 |
-
"59": "SUCCESS",
|
| 217 |
-
"6": "SUCCESS",
|
| 218 |
-
"60": "SUCCESS",
|
| 219 |
-
"61": "SUCCESS",
|
| 220 |
-
"62": "SUCCESS",
|
| 221 |
-
"63": "SUCCESS",
|
| 222 |
-
"64": "SUCCESS",
|
| 223 |
-
"65": "SUCCESS",
|
| 224 |
-
"66": "SUCCESS",
|
| 225 |
-
"67": "SUCCESS",
|
| 226 |
-
"68": "SUCCESS",
|
| 227 |
-
"69": "SUCCESS",
|
| 228 |
-
"7": "SUCCESS",
|
| 229 |
-
"70": "SUCCESS",
|
| 230 |
-
"71": "SUCCESS",
|
| 231 |
-
"72": "SUCCESS",
|
| 232 |
-
"73": "SUCCESS",
|
| 233 |
-
"74": "SUCCESS",
|
| 234 |
-
"75": "SUCCESS",
|
| 235 |
-
"76": "SUCCESS",
|
| 236 |
-
"77": "SUCCESS",
|
| 237 |
-
"78": "SUCCESS",
|
| 238 |
-
"79": "SUCCESS",
|
| 239 |
-
"8": "SUCCESS",
|
| 240 |
-
"80": "SUCCESS",
|
| 241 |
-
"81": "SUCCESS",
|
| 242 |
-
"82": "SUCCESS",
|
| 243 |
-
"83": "SUCCESS",
|
| 244 |
-
"84": "SUCCESS",
|
| 245 |
-
"85": "SUCCESS",
|
| 246 |
-
"86": "SUCCESS",
|
| 247 |
-
"87": "SUCCESS",
|
| 248 |
-
"88": "SUCCESS",
|
| 249 |
-
"89": "SUCCESS",
|
| 250 |
-
"9": "SUCCESS",
|
| 251 |
-
"90": "SUCCESS",
|
| 252 |
-
"91": "SUCCESS",
|
| 253 |
-
"92": "SUCCESS",
|
| 254 |
-
"93": "SUCCESS",
|
| 255 |
-
"94": "SUCCESS",
|
| 256 |
-
"95": "SUCCESS",
|
| 257 |
-
"96": "SUCCESS",
|
| 258 |
-
"97": "SUCCESS",
|
| 259 |
-
"98": "SUCCESS",
|
| 260 |
-
"99": "SUCCESS"
|
| 261 |
},
|
| 262 |
"architectures": [
|
| 263 |
"GPTOptim"
|
| 264 |
],
|
| 265 |
"attn_pdrop": 0.1,
|
| 266 |
"auto_map": {
|
| 267 |
-
"AutoConfig": "
|
| 268 |
-
"AutoModelForCausalLM": "
|
| 269 |
},
|
| 270 |
"block_size": 1024,
|
| 271 |
"bos_token_id": 50256,
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "distributed/optimized-gpt2-2b-vtestnet-v1",
|
| 3 |
"activation_function": "gelu_new",
|
| 4 |
"all_reduce_scores": {
|
| 5 |
"0": "SUCCESS",
|
| 6 |
"1": "SUCCESS",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"2": "SUCCESS",
|
| 8 |
+
"3": "NON_PARTICIPATING",
|
| 9 |
+
"4": "NON_PARTICIPATING",
|
| 10 |
+
"5": "NON_PARTICIPATING",
|
| 11 |
+
"6": "NON_PARTICIPATING",
|
| 12 |
+
"7": "NON_PARTICIPATING",
|
| 13 |
+
"8": "NON_PARTICIPATING",
|
| 14 |
+
"9": "NON_PARTICIPATING"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
},
|
| 16 |
"architectures": [
|
| 17 |
"GPTOptim"
|
| 18 |
],
|
| 19 |
"attn_pdrop": 0.1,
|
| 20 |
"auto_map": {
|
| 21 |
+
"AutoConfig": "configuration_gpt_optimized.GPTOptimConfig",
|
| 22 |
+
"AutoModelForCausalLM": "modeling_gpt_optimized.GPTOptim"
|
| 23 |
},
|
| 24 |
"block_size": 1024,
|
| 25 |
"bos_token_id": 50256,
|
configuration_gpt_optimized.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig, GPT2Config
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class GPTOptimConfig(GPT2Config):
|
| 6 |
+
model_type = "gpt_optimized"
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
block_size: int = 1024, # max sequence length
|
| 11 |
+
vocab_size: int = 50257, # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
| 12 |
+
n_layer: int = 16, # number of layers
|
| 13 |
+
n_head: int = 16, # number of heads
|
| 14 |
+
n_embd: int = 1024, # embedding dimension
|
| 15 |
+
**kwargs,
|
| 16 |
+
):
|
| 17 |
+
super().__init__(**kwargs)
|
| 18 |
+
self.block_size = block_size
|
| 19 |
+
self.vocab_size = vocab_size
|
| 20 |
+
self.n_layer = n_layer
|
| 21 |
+
self.n_head = n_head
|
| 22 |
+
self.n_embd = n_embd
|
modeling_gpt_optimized.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import bitsandbytes
|
| 4 |
+
from torch.nn import CrossEntropyLoss, functional as F
|
| 5 |
+
from transformers import PreTrainedModel, GPT2PreTrainedModel
|
| 6 |
+
from .configuration_gpt_optimized import GPTOptimConfig
|
| 7 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
|
| 8 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
|
| 9 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
|
| 10 |
+
from typing import Optional, Tuple, Union
|
| 11 |
+
|
| 12 |
+
_CHECKPOINT_FOR_DOC = "openai-community/gpt2"
|
| 13 |
+
_CONFIG_FOR_DOC = "GPT2Config"
|
| 14 |
+
|
| 15 |
+
GPT2_INPUTS_DOCSTRING = r"""
|
| 16 |
+
Args:
|
| 17 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
| 18 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
| 19 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
| 20 |
+
sequence tokens in the vocabulary.
|
| 21 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
| 22 |
+
`input_ids`.
|
| 23 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 24 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 25 |
+
[What are input IDs?](../glossary#input-ids)
|
| 26 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
| 27 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
| 28 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
| 29 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
| 30 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 31 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 32 |
+
- 1 for tokens that are **not masked**,
|
| 33 |
+
- 0 for tokens that are **masked**.
|
| 34 |
+
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
|
| 35 |
+
`past_key_values`. In other words, the `attention_mask` always has to have the length:
|
| 36 |
+
`len(past_key_values) + len(input_ids)`
|
| 37 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 38 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
| 39 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 40 |
+
1]`:
|
| 41 |
+
- 0 corresponds to a *sentence A* token,
|
| 42 |
+
- 1 corresponds to a *sentence B* token.
|
| 43 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 44 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 45 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 46 |
+
config.max_position_embeddings - 1]`.
|
| 47 |
+
[What are position IDs?](../glossary#position-ids)
|
| 48 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 49 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 50 |
+
- 1 indicates the head is **not masked**,
|
| 51 |
+
- 0 indicates the head is **masked**.
|
| 52 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 53 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 54 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 55 |
+
model's internal embedding lookup matrix.
|
| 56 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
| 57 |
+
`past_key_values`).
|
| 58 |
+
use_cache (`bool`, *optional*):
|
| 59 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 60 |
+
`past_key_values`).
|
| 61 |
+
output_attentions (`bool`, *optional*):
|
| 62 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 63 |
+
tensors for more detail.
|
| 64 |
+
output_hidden_states (`bool`, *optional*):
|
| 65 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 66 |
+
more detail.
|
| 67 |
+
return_dict (`bool`, *optional*):
|
| 68 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
class CausalSelfAttention(nn.Module):
|
| 72 |
+
|
| 73 |
+
def __init__(self, config):
|
| 74 |
+
super().__init__()
|
| 75 |
+
assert config.n_embd % config.n_head == 0
|
| 76 |
+
# key, query, value projections for all heads, but in a batch
|
| 77 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
| 78 |
+
# output projection
|
| 79 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
| 80 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
| 81 |
+
# regularization
|
| 82 |
+
self.n_head = config.n_head
|
| 83 |
+
self.n_embd = config.n_embd
|
| 84 |
+
|
| 85 |
+
def forward(self, x):
|
| 86 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
| 87 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
| 88 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
| 89 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
| 90 |
+
qkv = self.c_attn(x)
|
| 91 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
| 92 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 93 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 94 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
| 95 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention
|
| 96 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
| 97 |
+
# output projection
|
| 98 |
+
y = self.c_proj(y)
|
| 99 |
+
return y
|
| 100 |
+
|
| 101 |
+
class MLP(nn.Module):
|
| 102 |
+
|
| 103 |
+
def __init__(self, config):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
| 106 |
+
self.gelu = nn.GELU(approximate='tanh')
|
| 107 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
| 108 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
| 109 |
+
|
| 110 |
+
def forward(self, x):
|
| 111 |
+
x = self.c_fc(x)
|
| 112 |
+
x = self.gelu(x)
|
| 113 |
+
x = self.c_proj(x)
|
| 114 |
+
return x
|
| 115 |
+
|
| 116 |
+
class Block(nn.Module):
|
| 117 |
+
|
| 118 |
+
def __init__(self, config):
|
| 119 |
+
super().__init__()
|
| 120 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
| 121 |
+
self.attn = CausalSelfAttention(config)
|
| 122 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
| 123 |
+
self.mlp = MLP(config)
|
| 124 |
+
|
| 125 |
+
def forward(self, x):
|
| 126 |
+
x = x + self.attn(self.ln_1(x))
|
| 127 |
+
x = x + self.mlp(self.ln_2(x))
|
| 128 |
+
return x
|
| 129 |
+
|
| 130 |
+
class GPT(nn.Module):
|
| 131 |
+
|
| 132 |
+
def __init__(self, config):
|
| 133 |
+
super().__init__()
|
| 134 |
+
self.config = config
|
| 135 |
+
|
| 136 |
+
self.transformer = nn.ModuleDict(dict(
|
| 137 |
+
wte = bitsandbytes.nn.StableEmbedding(config.vocab_size, config.n_embd),
|
| 138 |
+
wpe = bitsandbytes.nn.StableEmbedding(config.block_size, config.n_embd),
|
| 139 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
| 140 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
| 141 |
+
))
|
| 142 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 143 |
+
|
| 144 |
+
# weight sharing scheme
|
| 145 |
+
self.transformer.wte.weight = self.lm_head.weight
|
| 146 |
+
|
| 147 |
+
# init params
|
| 148 |
+
self.apply(self._init_weights)
|
| 149 |
+
|
| 150 |
+
def _init_weights(self, module):
|
| 151 |
+
if isinstance(module, nn.Linear):
|
| 152 |
+
std = 0.02
|
| 153 |
+
if hasattr(module, 'NANOGPT_SCALE_INIT'):
|
| 154 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
| 155 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
| 156 |
+
if module.bias is not None:
|
| 157 |
+
torch.nn.init.zeros_(module.bias)
|
| 158 |
+
elif isinstance(module, nn.Embedding):
|
| 159 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 160 |
+
|
| 161 |
+
class GPTOptim(GPT2PreTrainedModel):
|
| 162 |
+
config_class = GPTOptimConfig
|
| 163 |
+
|
| 164 |
+
def __init__(self, config):
|
| 165 |
+
super().__init__(config)
|
| 166 |
+
self.model = GPT(
|
| 167 |
+
config
|
| 168 |
+
)
|
| 169 |
+
self.config = config
|
| 170 |
+
|
| 171 |
+
def forward(self, input_ids, labels=None):
|
| 172 |
+
# input_ids is of shape (B, T)
|
| 173 |
+
B, T = input_ids.size()
|
| 174 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
| 175 |
+
# forward the token and posisition embeddings
|
| 176 |
+
pos = torch.arange(0, T, dtype=torch.long, device=input_ids.device) # shape (T)
|
| 177 |
+
pos_emb = self.model.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
| 178 |
+
tok_emb = self.model.transformer.wte(input_ids) # token embeddings of shape (B, T, n_embd)
|
| 179 |
+
x = tok_emb + pos_emb
|
| 180 |
+
# forward the blocks of the transformer
|
| 181 |
+
for block in self.model.transformer.h:
|
| 182 |
+
x = block(x)
|
| 183 |
+
# forward the final layernorm and the classifier
|
| 184 |
+
x = self.model.transformer.ln_f(x)
|
| 185 |
+
logits = self.model.lm_head(x) # (B, T, vocab_size)
|
| 186 |
+
loss = None
|
| 187 |
+
if labels is not None:
|
| 188 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=self.config.eos_token_id)
|
| 189 |
+
return logits, loss
|