End of training
Browse files
README.md
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
---
|
2 |
base_model: distilbert/distilgpt2
|
|
|
|
|
3 |
library_name: Distily
|
4 |
license: apache-2.0
|
5 |
tags:
|
@@ -9,163 +11,231 @@ model-index:
|
|
9 |
results: []
|
10 |
---
|
11 |
|
12 |
-
# short_gpt2
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
- eval_enwikippl: 65.0
|
20 |
-
- eval_frwikippl: 215.0
|
21 |
-
- eval_zhwikippl: 104.5
|
22 |
-
- eval_tinystoriesppl: 49.75
|
23 |
-
- eval_loss: 0.4281
|
24 |
-
- eval_runtime: 102.0824
|
25 |
-
- eval_samples_per_second: 97.96
|
26 |
-
- eval_steps_per_second: 12.245
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
should probably proofread and complete it, then remove this comment.
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
More information needed
|
34 |
-
|
35 |
-
## Intended uses & limitations
|
36 |
|
37 |
More information needed
|
38 |
|
39 |
-
|
40 |
|
41 |
More information needed
|
42 |
-->
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
### Training hyperparameters
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
- train_embeddings: True
|
51 |
-
- learning_rate: 0.0001
|
52 |
-
- train_batch_size: 4
|
53 |
-
- eval_batch_size: 8
|
54 |
-
- seed: 42
|
55 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
-
- lr_scheduler_type: constant
|
57 |
-
- lr_scheduler_warmup_ratio: 0.2
|
58 |
-
- num_epochs: 1.0
|
59 |
-
|
60 |
-
### Resource Usage
|
61 |
-
Peak GPU Memory: 7.2012 GB
|
62 |
-
|
63 |
-
### Eval-Phase Metrics
|
64 |
| step | epoch | enwikippl | frwikippl | loss | runtime | samples_per_second | steps_per_second | tinystoriesppl | zhwikippl |
|
65 |
-
|
|
66 |
| **teacher eval** | | 43.25 | 61.25 | | | | | 11.6875 | 19.125 |
|
67 |
-
| 0 | 0 |
|
68 |
-
| 2500 | 0.0101 |
|
69 |
-
| 5000 | 0.0202 |
|
70 |
-
| 7500 | 0.0303 |
|
71 |
-
| 10000 | 0.0404 |
|
72 |
-
| 12500 | 0.0505 |
|
73 |
-
| 15000 | 0.0606 |
|
74 |
-
| 17500 | 0.0707 |
|
75 |
-
| 20000 | 0.0808 |
|
76 |
-
| 22500 | 0.0909 |
|
77 |
-
| 25000 | 0.1010 |
|
78 |
-
| 27500 | 0.1111 |
|
79 |
-
| 30000 | 0.1212 |
|
80 |
-
| 32500 | 0.1313 |
|
81 |
-
| 35000 | 0.1414 |
|
82 |
-
| 37500 | 0.1515 |
|
83 |
-
| 40000 | 0.1616 |
|
84 |
-
| 42500 | 0.1717 |
|
85 |
-
| 45000 | 0.1818 |
|
86 |
-
| 47500 | 0.1919 |
|
87 |
-
| 50000 | 0.2020 |
|
88 |
-
| 52500 | 0.2121 |
|
89 |
-
| 55000 | 0.2222 | 76.
|
90 |
-
| 57500 | 0.2323 |
|
91 |
-
| 60000 | 0.2424 |
|
92 |
-
| 62500 | 0.2525 |
|
93 |
-
| 65000 | 0.2626 |
|
94 |
-
| 67500 | 0.2727 |
|
95 |
-
| 70000 | 0.2828 |
|
96 |
-
| 72500 | 0.2929 |
|
97 |
-
| 75000 | 0.3030 |
|
98 |
-
| 77500 | 0.3131 |
|
99 |
-
| 80000 | 0.3232 |
|
100 |
-
| 82500 | 0.3333 | 68.0 |
|
101 |
-
| 85000 | 0.3434 |
|
102 |
-
| 87500 | 0.3535 | 66.5 |
|
103 |
-
| 90000 | 0.3636 |
|
104 |
-
| 92500 | 0.3737 |
|
105 |
-
| 95000 | 0.3838 |
|
106 |
-
| 97500 | 0.3939 |
|
107 |
-
| 100000 | 0.4040 |
|
108 |
-
| 102500 | 0.4141 |
|
109 |
-
| 105000 | 0.4242 |
|
110 |
-
| 107500 | 0.4343 |
|
111 |
-
| 110000 | 0.4444 |
|
112 |
-
| 112500 | 0.4545 |
|
113 |
-
| 115000 | 0.4646 |
|
114 |
-
| 117500 | 0.4747 |
|
115 |
-
| 120000 | 0.4848 |
|
116 |
-
| 122500 | 0.4949 |
|
117 |
-
| 125000 | 0.5051 |
|
118 |
-
| 127500 | 0.5152 |
|
119 |
-
| 130000 | 0.5253 | 65.
|
120 |
-
| 132500 | 0.5354 |
|
121 |
-
| 135000 | 0.5455 |
|
122 |
-
| 137500 | 0.5556 |
|
123 |
-
| 140000 | 0.5657 | 66.
|
124 |
-
| 142500 | 0.5758 |
|
125 |
-
| 145000 | 0.5859 | 65.
|
126 |
-
| 147500 | 0.5960 |
|
127 |
-
| 150000 | 0.6061 |
|
128 |
-
| 152500 | 0.6162 |
|
129 |
-
| 155000 | 0.6263 |
|
130 |
-
| 157500 | 0.6364 |
|
131 |
-
| 160000 | 0.6465 |
|
132 |
-
| 162500 | 0.6566 |
|
133 |
-
| 165000 | 0.6667 |
|
134 |
-
| 167500 | 0.6768 |
|
135 |
-
| 170000 | 0.6869 |
|
136 |
-
| 172500 | 0.6970 |
|
137 |
-
| 175000 | 0.7071 |
|
138 |
-
| 177500 | 0.7172 |
|
139 |
-
| 180000 | 0.7273 |
|
140 |
-
| 182500 | 0.7374 |
|
141 |
-
| 185000 | 0.7475 |
|
142 |
-
| 187500 | 0.7576 |
|
143 |
-
| 190000 | 0.7677 |
|
144 |
-
| 192500 | 0.7778 |
|
145 |
-
| 195000 | 0.7879 |
|
146 |
-
| 197500 | 0.7980 |
|
147 |
-
| 200000 | 0.8081 |
|
148 |
-
| 202500 | 0.8182 |
|
149 |
-
| 205000 | 0.8283 |
|
150 |
-
| 207500 | 0.8384 |
|
151 |
-
| 210000 | 0.8485 |
|
152 |
-
| 212500 | 0.8586 |
|
153 |
-
| 215000 | 0.8687 |
|
154 |
-
| 217500 | 0.8788 |
|
155 |
-
| 220000 | 0.8889 |
|
156 |
-
| 222500 | 0.8990 |
|
157 |
-
| 225000 | 0.9091 |
|
158 |
-
| 227500 | 0.9192 |
|
159 |
-
| 230000 | 0.9293 |
|
160 |
-
| 232500 | 0.9394 |
|
161 |
-
| 235000 | 0.9495 |
|
162 |
-
| 237500 | 0.9596 |
|
163 |
-
| 240000 | 0.9697 |
|
164 |
-
| 242500 | 0.9798 |
|
165 |
-
| 245000 | 0.9899 |
|
166 |
-
| 247500 | 1.0 |
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
- Distily 0.2.0
|
170 |
- Transformers 4.44.0
|
171 |
- Pytorch 2.3.0
|
|
|
1 |
---
|
2 |
base_model: distilbert/distilgpt2
|
3 |
+
datasets:
|
4 |
+
- wikimedia/wikipedia
|
5 |
library_name: Distily
|
6 |
license: apache-2.0
|
7 |
tags:
|
|
|
11 |
results: []
|
12 |
---
|
13 |
|
|
|
14 |
|
15 |
+
# Summary
|
16 |
|
17 |
+
Distilled with [Distily](https://github.com/lapp0/distily) library
|
18 |
+
using teacher model [gpt2](https://huggingface.co/gpt2)
|
19 |
+
on dataset [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
22 |
should probably proofread and complete it, then remove this comment.
|
23 |
|
24 |
+
# Model description
|
|
|
|
|
|
|
|
|
25 |
|
26 |
More information needed
|
27 |
|
28 |
+
# Intended uses & limitations
|
29 |
|
30 |
More information needed
|
31 |
-->
|
32 |
|
33 |
+
# Model Architecture:
|
34 |
+
- **Architecture**: `GPT2LMHeadModel`
|
35 |
+
- **Total Parameters**: 81,912,576
|
36 |
+
- **Data Type (dtype)**: torch.bfloat16
|
37 |
+
- **Model Size**: 0.16 GB
|
38 |
|
|
|
39 |
|
40 |
+
# Evaluation Metrics Comparison
|
41 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
| step | epoch | enwikippl | frwikippl | loss | runtime | samples_per_second | steps_per_second | tinystoriesppl | zhwikippl |
|
43 |
+
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
44 |
| **teacher eval** | | 43.25 | 61.25 | | | | | 11.6875 | 19.125 |
|
45 |
+
| 0 | 0 | 2018634629120.0 | 122045790683136.0 | 21.0022 | 102.1494 | 97.896 | 12.237 | 9999220736.0 | 43705587204096.0 |
|
46 |
+
| 2500 | 0.0101 | 299008.0 | 6422528.0 | 5.8065 | 101.9861 | 98.053 | 12.257 | 45824.0 | 14483456.0 |
|
47 |
+
| 5000 | 0.0202 | 6880.0 | 96256.0 | 3.3113 | 102.9516 | 97.133 | 12.142 | 4160.0 | 493568.0 |
|
48 |
+
| 7500 | 0.0303 | 1216.0 | 8096.0 | 2.1560 | 103.0236 | 97.065 | 12.133 | 692.0 | 42752.0 |
|
49 |
+
| 10000 | 0.0404 | 608.0 | 3664.0 | 1.7825 | 102.3752 | 97.68 | 12.21 | 388.0 | 888.0 |
|
50 |
+
| 12500 | 0.0505 | 358.0 | 1632.0 | 1.4664 | 102.1871 | 97.86 | 12.232 | 272.0 | 308.0 |
|
51 |
+
| 15000 | 0.0606 | 288.0 | 1176.0 | 1.3488 | 102.6007 | 97.465 | 12.183 | 228.0 | 260.0 |
|
52 |
+
| 17500 | 0.0707 | 255.0 | 1040.0 | 1.2932 | 102.1542 | 97.891 | 12.236 | 199.0 | 215.0 |
|
53 |
+
| 20000 | 0.0808 | 216.0 | 892.0 | 1.1570 | 102.1073 | 97.936 | 12.242 | 173.0 | 149.0 |
|
54 |
+
| 22500 | 0.0909 | 178.0 | 740.0 | 1.0350 | 102.0765 | 97.966 | 12.246 | 146.0 | 141.0 |
|
55 |
+
| 25000 | 0.1010 | 155.0 | 524.0 | 0.9676 | 102.1019 | 97.941 | 12.243 | 122.5 | 139.0 |
|
56 |
+
| 27500 | 0.1111 | 142.0 | 560.0 | 0.9230 | 102.0256 | 98.015 | 12.252 | 114.0 | 130.0 |
|
57 |
+
| 30000 | 0.1212 | 137.0 | 470.0 | 0.8998 | 102.3365 | 97.717 | 12.215 | 108.5 | 138.0 |
|
58 |
+
| 32500 | 0.1313 | 134.0 | 476.0 | 0.8740 | 102.3911 | 97.665 | 12.208 | 104.0 | 140.0 |
|
59 |
+
| 35000 | 0.1414 | 129.0 | 496.0 | 0.8657 | 102.2153 | 97.833 | 12.229 | 102.5 | 141.0 |
|
60 |
+
| 37500 | 0.1515 | 127.0 | 464.0 | 0.8513 | 102.0489 | 97.992 | 12.249 | 97.0 | 117.0 |
|
61 |
+
| 40000 | 0.1616 | 108.0 | 446.0 | 0.7522 | 102.9331 | 97.15 | 12.144 | 93.0 | 104.0 |
|
62 |
+
| 42500 | 0.1717 | 99.5 | 374.0 | 0.6850 | 103.1088 | 96.985 | 12.123 | 82.0 | 116.0 |
|
63 |
+
| 45000 | 0.1818 | 90.5 | 346.0 | 0.6316 | 102.7903 | 97.285 | 12.161 | 73.5 | 113.0 |
|
64 |
+
| 47500 | 0.1919 | 82.5 | 320.0 | 0.5960 | 102.5988 | 97.467 | 12.183 | 71.0 | 101.0 |
|
65 |
+
| 50000 | 0.2020 | 78.5 | 306.0 | 0.5676 | 102.5936 | 97.472 | 12.184 | 72.5 | 106.0 |
|
66 |
+
| 52500 | 0.2121 | 79.5 | 290.0 | 0.5424 | 102.5863 | 97.479 | 12.185 | 64.5 | 92.0 |
|
67 |
+
| 55000 | 0.2222 | 76.0 | 270.0 | 0.5280 | 102.6307 | 97.437 | 12.18 | 65.0 | 87.0 |
|
68 |
+
| 57500 | 0.2323 | 76.5 | 272.0 | 0.5278 | 101.9639 | 98.074 | 12.259 | 64.5 | 102.0 |
|
69 |
+
| 60000 | 0.2424 | 77.5 | 268.0 | 0.5286 | 102.0921 | 97.951 | 12.244 | 62.75 | 99.5 |
|
70 |
+
| 62500 | 0.2525 | 75.5 | 264.0 | 0.5204 | 102.0679 | 97.974 | 12.247 | 63.25 | 83.0 |
|
71 |
+
| 65000 | 0.2626 | 76.0 | 260.0 | 0.5176 | 102.1795 | 97.867 | 12.233 | 61.5 | 90.5 |
|
72 |
+
| 67500 | 0.2727 | 74.5 | 256.0 | 0.5112 | 102.5764 | 97.488 | 12.186 | 62.25 | 93.5 |
|
73 |
+
| 70000 | 0.2828 | 73.5 | 258.0 | 0.5128 | 101.9569 | 98.081 | 12.26 | 62.0 | 79.0 |
|
74 |
+
| 72500 | 0.2929 | 75.0 | 250.0 | 0.5053 | 101.9382 | 98.099 | 12.262 | 64.0 | 96.0 |
|
75 |
+
| 75000 | 0.3030 | 72.5 | 238.0 | 0.5068 | 102.0407 | 98.0 | 12.25 | 61.5 | 88.5 |
|
76 |
+
| 77500 | 0.3131 | 73.5 | 256.0 | 0.5085 | 102.0542 | 97.987 | 12.248 | 64.5 | 86.5 |
|
77 |
+
| 80000 | 0.3232 | 70.5 | 238.0 | 0.4699 | 102.4042 | 97.652 | 12.207 | 54.75 | 98.5 |
|
78 |
+
| 82500 | 0.3333 | 68.0 | 242.0 | 0.4574 | 102.2684 | 97.782 | 12.223 | 55.5 | 160.0 |
|
79 |
+
| 85000 | 0.3434 | 64.5 | 218.0 | 0.4490 | 102.3277 | 97.725 | 12.216 | 52.0 | 77.5 |
|
80 |
+
| 87500 | 0.3535 | 66.5 | 203.0 | 0.4394 | 102.1134 | 97.93 | 12.241 | 51.25 | 67.5 |
|
81 |
+
| 90000 | 0.3636 | 63.75 | 212.0 | 0.4310 | 102.0438 | 97.997 | 12.25 | 51.25 | 88.5 |
|
82 |
+
| 92500 | 0.3737 | 65.5 | 209.0 | 0.4262 | 101.9984 | 98.041 | 12.255 | 49.75 | 103.5 |
|
83 |
+
| 95000 | 0.3838 | 65.0 | 204.0 | 0.4274 | 102.0781 | 97.964 | 12.246 | 46.25 | 83.0 |
|
84 |
+
| 97500 | 0.3939 | 64.5 | 201.0 | 0.4192 | 102.0692 | 97.973 | 12.247 | 50.5 | 94.5 |
|
85 |
+
| 100000 | 0.4040 | 64.5 | 203.0 | 0.4207 | 102.1283 | 97.916 | 12.24 | 49.0 | 88.0 |
|
86 |
+
| 102500 | 0.4141 | 63.0 | 209.0 | 0.4184 | 102.224 | 97.824 | 12.228 | 48.0 | 125.0 |
|
87 |
+
| 105000 | 0.4242 | 62.75 | 193.0 | 0.4166 | 102.1918 | 97.855 | 12.232 | 46.0 | 76.0 |
|
88 |
+
| 107500 | 0.4343 | 62.75 | 197.0 | 0.4128 | 102.1719 | 97.874 | 12.234 | 47.0 | 113.0 |
|
89 |
+
| 110000 | 0.4444 | 64.5 | 191.0 | 0.4118 | 103.0992 | 96.994 | 12.124 | 49.0 | 82.0 |
|
90 |
+
| 112500 | 0.4545 | 65.0 | 213.0 | 0.4128 | 102.7296 | 97.343 | 12.168 | 47.0 | 111.5 |
|
91 |
+
| 115000 | 0.4646 | 68.5 | 207.0 | 0.4301 | 102.178 | 97.868 | 12.234 | 49.0 | 108.0 |
|
92 |
+
| 117500 | 0.4747 | 65.0 | 217.0 | 0.4372 | 102.2302 | 97.818 | 12.227 | 50.25 | 124.0 |
|
93 |
+
| 120000 | 0.4848 | 65.5 | 210.0 | 0.4351 | 102.2952 | 97.756 | 12.22 | 51.0 | 139.0 |
|
94 |
+
| 122500 | 0.4949 | 66.0 | 272.0 | 0.4352 | 102.1941 | 97.853 | 12.232 | 50.5 | 226.0 |
|
95 |
+
| 125000 | 0.5051 | 67.0 | 240.0 | 0.4387 | 101.978 | 98.06 | 12.258 | 49.0 | 71.0 |
|
96 |
+
| 127500 | 0.5152 | 66.5 | 224.0 | 0.4396 | 101.9014 | 98.134 | 12.267 | 49.75 | 100.0 |
|
97 |
+
| 130000 | 0.5253 | 65.5 | 227.0 | 0.4354 | 102.1244 | 97.92 | 12.24 | 50.75 | 146.0 |
|
98 |
+
| 132500 | 0.5354 | 66.0 | 209.0 | 0.4286 | 102.0218 | 98.018 | 12.252 | 52.25 | 101.5 |
|
99 |
+
| 135000 | 0.5455 | 64.5 | 220.0 | 0.4361 | 101.9074 | 98.128 | 12.266 | 51.25 | 181.0 |
|
100 |
+
| 137500 | 0.5556 | 66.5 | 223.0 | 0.4288 | 102.0744 | 97.968 | 12.246 | 49.0 | 103.0 |
|
101 |
+
| 140000 | 0.5657 | 66.5 | 232.0 | 0.4287 | 102.1162 | 97.928 | 12.241 | 49.25 | 127.5 |
|
102 |
+
| 142500 | 0.5758 | 66.5 | 220.0 | 0.4299 | 101.9461 | 98.091 | 12.261 | 49.5 | 88.5 |
|
103 |
+
| 145000 | 0.5859 | 65.5 | 217.0 | 0.4238 | 101.9572 | 98.08 | 12.26 | 48.75 | 177.0 |
|
104 |
+
| 147500 | 0.5960 | 64.0 | 205.0 | 0.4109 | 101.9497 | 98.088 | 12.261 | 48.75 | 128.0 |
|
105 |
+
| 150000 | 0.6061 | 63.5 | 224.0 | 0.4051 | 102.0205 | 98.02 | 12.252 | 48.5 | 117.5 |
|
106 |
+
| 152500 | 0.6162 | 63.25 | 202.0 | 0.4000 | 101.9318 | 98.105 | 12.263 | 47.5 | 160.0 |
|
107 |
+
| 155000 | 0.6263 | 63.75 | 195.0 | 0.4052 | 102.0203 | 98.02 | 12.252 | 48.75 | 100.0 |
|
108 |
+
| 157500 | 0.6364 | 63.75 | 212.0 | 0.4014 | 101.8935 | 98.142 | 12.268 | 49.25 | 113.0 |
|
109 |
+
| 160000 | 0.6465 | 62.75 | 198.0 | 0.3988 | 101.9178 | 98.118 | 12.265 | 44.5 | 132.0 |
|
110 |
+
| 162500 | 0.6566 | 64.5 | 192.0 | 0.3918 | 102.0303 | 98.01 | 12.251 | 45.5 | 100.0 |
|
111 |
+
| 165000 | 0.6667 | 62.5 | 202.0 | 0.3958 | 102.3627 | 97.692 | 12.211 | 47.75 | 88.5 |
|
112 |
+
| 167500 | 0.6768 | 62.5 | 191.0 | 0.3883 | 102.1537 | 97.892 | 12.236 | 44.75 | 80.5 |
|
113 |
+
| 170000 | 0.6869 | 63.5 | 195.0 | 0.3880 | 102.0728 | 97.969 | 12.246 | 51.0 | 91.5 |
|
114 |
+
| 172500 | 0.6970 | 60.75 | 201.0 | 0.3863 | 101.9235 | 98.113 | 12.264 | 47.5 | 90.5 |
|
115 |
+
| 175000 | 0.7071 | 61.5 | 189.0 | 0.3806 | 101.9376 | 98.099 | 12.262 | 46.5 | 82.5 |
|
116 |
+
| 177500 | 0.7172 | 58.75 | 171.0 | 0.3512 | 101.9844 | 98.054 | 12.257 | 42.75 | 66.0 |
|
117 |
+
| 180000 | 0.7273 | 55.5 | 161.0 | 0.3218 | 101.881 | 98.154 | 12.269 | 39.25 | 54.0 |
|
118 |
+
| 182500 | 0.7374 | 54.25 | 149.0 | 0.3148 | 101.9839 | 98.055 | 12.257 | 38.75 | 47.75 |
|
119 |
+
| 185000 | 0.7475 | 53.5 | 160.0 | 0.3133 | 101.9875 | 98.051 | 12.256 | 38.75 | 45.0 |
|
120 |
+
| 187500 | 0.7576 | 54.75 | 160.0 | 0.3114 | 101.9762 | 98.062 | 12.258 | 38.0 | 43.75 |
|
121 |
+
| 190000 | 0.7677 | 53.75 | 147.0 | 0.3075 | 101.9972 | 98.042 | 12.255 | 38.0 | 38.25 |
|
122 |
+
| 192500 | 0.7778 | 54.0 | 157.0 | 0.3057 | 101.9431 | 98.094 | 12.262 | 38.0 | 48.0 |
|
123 |
+
| 195000 | 0.7879 | 53.25 | 149.0 | 0.3058 | 101.9778 | 98.061 | 12.258 | 37.0 | 41.0 |
|
124 |
+
| 197500 | 0.7980 | 54.0 | 152.0 | 0.3032 | 102.0059 | 98.034 | 12.254 | 37.25 | 40.0 |
|
125 |
+
| 200000 | 0.8081 | 53.75 | 151.0 | 0.3033 | 102.0615 | 97.98 | 12.248 | 37.25 | 47.25 |
|
126 |
+
| 202500 | 0.8182 | 53.0 | 146.0 | 0.2957 | 102.0116 | 98.028 | 12.254 | 36.75 | 39.0 |
|
127 |
+
| 205000 | 0.8283 | 52.5 | 139.0 | 0.2903 | 102.1449 | 97.9 | 12.238 | 36.5 | 35.75 |
|
128 |
+
| 207500 | 0.8384 | 52.0 | 142.0 | 0.2894 | 102.0126 | 98.027 | 12.253 | 36.25 | 38.25 |
|
129 |
+
| 210000 | 0.8485 | 52.25 | 142.0 | 0.2883 | 102.0938 | 97.949 | 12.244 | 36.0 | 37.25 |
|
130 |
+
| 212500 | 0.8586 | 52.5 | 141.0 | 0.2874 | 101.9515 | 98.086 | 12.261 | 36.0 | 37.0 |
|
131 |
+
| 215000 | 0.8687 | 52.25 | 140.0 | 0.2873 | 101.9427 | 98.094 | 12.262 | 36.0 | 36.0 |
|
132 |
+
| 217500 | 0.8788 | 51.75 | 141.0 | 0.2863 | 102.0114 | 98.028 | 12.254 | 36.0 | 35.5 |
|
133 |
+
| 220000 | 0.8889 | 52.0 | 141.0 | 0.2854 | 102.0424 | 97.999 | 12.25 | 36.0 | 35.75 |
|
134 |
+
| 222500 | 0.8990 | 52.5 | 143.0 | 0.2853 | 102.0368 | 98.004 | 12.25 | 36.0 | 35.25 |
|
135 |
+
| 225000 | 0.9091 | 52.0 | 142.0 | 0.2849 | 102.115 | 97.929 | 12.241 | 35.75 | 35.0 |
|
136 |
+
| 227500 | 0.9192 | 52.0 | 141.0 | 0.2851 | 102.0455 | 97.996 | 12.249 | 36.0 | 35.25 |
|
137 |
+
| 230000 | 0.9293 | 52.0 | 141.0 | 0.2846 | 102.0273 | 98.013 | 12.252 | 35.75 | 35.25 |
|
138 |
+
| 232500 | 0.9394 | 52.0 | 141.0 | 0.2843 | 101.961 | 98.077 | 12.26 | 35.75 | 35.0 |
|
139 |
+
| 235000 | 0.9495 | 52.0 | 141.0 | 0.2844 | 102.0188 | 98.021 | 12.253 | 35.75 | 35.25 |
|
140 |
+
| 237500 | 0.9596 | 52.0 | 141.0 | 0.2845 | 102.0714 | 97.971 | 12.246 | 35.75 | 35.25 |
|
141 |
+
| 240000 | 0.9697 | 52.0 | 141.0 | 0.2844 | 102.0371 | 98.004 | 12.25 | 35.75 | 35.25 |
|
142 |
+
| 242500 | 0.9798 | 52.0 | 141.0 | 0.2844 | 102.0363 | 98.004 | 12.251 | 35.75 | 35.25 |
|
143 |
+
| 245000 | 0.9899 | 52.0 | 141.0 | 0.2844 | 102.0254 | 98.015 | 12.252 | 35.75 | 35.25 |
|
144 |
+
| 247500 | 1.0 | 52.0 | 141.0 | 0.2846 | 102.5728 | 97.492 | 12.186 | 35.75 | 35.25 |
|
145 |
+
|
146 |
+
# Resource Usage Comparison
|
147 |
+
|
148 |
+
- VRAM Use: 7.2012 GB
|
149 |
+
|
150 |
+
`# Distillation (Teacher -> Student) Architecture Difference:
|
151 |
+
|
152 |
+
- **Architecture**: `GPT2LMHeadModel` -> `GPT2LMHeadModel`
|
153 |
+
- **Total Parameters**: 124,439,808 -> 81,912,576
|
154 |
+
- **Data Type (dtype)**: 124439808 -> torch.bfloat16
|
155 |
+
- **Model Size**: 0.24 GB -> 0.16 GB
|
156 |
+
|
157 |
+
<details>
|
158 |
+
<summary>Module Diff Details</summary>
|
159 |
+
|
160 |
+
```diff
|
161 |
+
--- teacher model modules
|
162 |
+
+++ student model modules
|
163 |
+
@@ -4,7 +4,7 @@
|
164 |
+
(wpe): Embedding(1024, 768)
|
165 |
+
(drop): Dropout(p=0.1, inplace=False)
|
166 |
+
(h): ModuleList(
|
167 |
+
- (0-11): 12 x GPT2Block(
|
168 |
+
+ (0-5): 6 x GPT2Block(
|
169 |
+
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
170 |
+
(attn): GPT2FlashAttention2(
|
171 |
+
(c_attn): Conv1D()
|
172 |
+
|
173 |
+
```
|
174 |
+
|
175 |
+
</details>
|
176 |
+
<br/>
|
177 |
+
|
178 |
+
# Train Dataset
|
179 |
+
Trained on 521,350,663 tokens from the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset.
|
180 |
+
|
181 |
+
- Num Samples: `990,000`
|
182 |
+
- Subset: `20231101.en`
|
183 |
+
- Split: `train`
|
184 |
+
|
185 |
+
|
186 |
+
# Training Objective
|
187 |
+
|
188 |
+
```
|
189 |
+
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))
|
190 |
+
```
|
191 |
+
|
192 |
+
# Hyperparameters
|
193 |
+
The following hyperparameters were used during training:
|
194 |
+
|
195 |
+
<details>
|
196 |
+
<summary>Expand</summary>
|
197 |
+
|
198 |
+
- learning_rate: `0.0001`
|
199 |
+
- train_batch_size: `4`
|
200 |
+
- eval_batch_size: `8`
|
201 |
+
- seed: `42`
|
202 |
+
- optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08`
|
203 |
+
- lr_scheduler_type: `cosine`
|
204 |
+
- lr_scheduler_warmup_ratio: `0.5`
|
205 |
+
- num_epochs: `1.0`
|
206 |
+
- distillation_objective: `DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))`
|
207 |
+
- train_embeddings: `True`
|
208 |
+
- lr_scheduler: `<torch.optim.lr_scheduler.LambdaLR object at 0x7fd9b01df220>`
|
209 |
+
- student_model_name_or_path: `None`
|
210 |
+
- student_config_name_or_path: `distilbert/distilgpt2`
|
211 |
+
- student_model_config: `None`
|
212 |
+
- reinitialize_weights: `None`
|
213 |
+
- copy_teacher_modules: `[('lm_head', False)]`
|
214 |
+
- student_model_as_bitnet: `False`
|
215 |
+
- student_model_compile: `False`
|
216 |
+
- dropout: `None`
|
217 |
+
- teacher_model_name_or_path: `gpt2`
|
218 |
+
- teacher_load_in_8bit: `False`
|
219 |
+
- teacher_load_in_4bit: `False`
|
220 |
+
- teacher_model_compile: `False`
|
221 |
+
- dataset_uri: `wikimedia/wikipedia`
|
222 |
+
- dataset_subset: `20231101.en`
|
223 |
+
- dataset_split: `train`
|
224 |
+
- dataset_column_name: `text`
|
225 |
+
- dataset_sample_size: `1000000`
|
226 |
+
- dataset_test_size: `0.01`
|
227 |
+
- gradient_accumulation_steps: `1`
|
228 |
+
- weight_decay: `0.0`
|
229 |
+
- max_grad_norm: `1.0`
|
230 |
+
- warmup_ratio: `0.5`
|
231 |
+
- warmup_steps: `0`
|
232 |
+
- gradient_checkpointing: `True`
|
233 |
+
|
234 |
+
</details>
|
235 |
+
<br/>
|
236 |
+
|
237 |
+
|
238 |
+
# Framework Versions
|
239 |
- Distily 0.2.0
|
240 |
- Transformers 4.44.0
|
241 |
- Pytorch 2.3.0
|
logs/dataset_sample_size=1000000, lr_scheduler_type=cosine, warmup_ratio=0.5/events.out.tfevents.1724299704.f383272e719b
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb078a1e224df95b4a3313b682e0a047636b719ad696e0cdadedd7711e757272
|
3 |
+
size 588
|