disham993 commited on
Commit
c60d79e
·
verified ·
1 Parent(s): c4ec9dd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -8,12 +8,13 @@ tags:
8
  datasets:
9
  - disham993/ElectricalDeviceFeedbackBalanced
10
  metrics:
11
- - epoch: 5.0
12
  - eval_f1: 0.8899
13
  - eval_accuracy: 0.8875
14
  - eval_runtime: 1.2105
15
  - eval_samples_per_second: 1116.881
16
  - eval_steps_per_second: 18.174
 
17
  ---
18
 
19
  # electrical-classification-ModernBERT-base
@@ -62,7 +63,7 @@ You can use this model for Sentiment Analysis of the Electrical Device Feedback
62
  ```python
63
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
64
 
65
- model_name = "disham993/electrical-classification-ModernBERT-large"
66
  tokenizer = AutoTokenizer.from_pretrained(model_name)
67
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
68
  nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
@@ -84,4 +85,4 @@ For a complete guide covering the entire process - from data tokenization to pus
84
 
85
  ## Last update
86
 
87
- 2025-01-05
 
8
  datasets:
9
  - disham993/ElectricalDeviceFeedbackBalanced
10
  metrics:
11
+ - epoch: 5
12
  - eval_f1: 0.8899
13
  - eval_accuracy: 0.8875
14
  - eval_runtime: 1.2105
15
  - eval_samples_per_second: 1116.881
16
  - eval_steps_per_second: 18.174
17
+ library_name: transformers
18
  ---
19
 
20
  # electrical-classification-ModernBERT-base
 
63
  ```python
64
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
65
 
66
+ model_name = "disham993/electrical-classification-ModernBERT-base"
67
  tokenizer = AutoTokenizer.from_pretrained(model_name)
68
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
69
  nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
 
85
 
86
  ## Last update
87
 
88
+ 2025-01-05