Update README.md
Browse files
README.md
CHANGED
@@ -8,12 +8,13 @@ tags:
|
|
8 |
datasets:
|
9 |
- disham993/ElectricalDeviceFeedbackBalanced
|
10 |
metrics:
|
11 |
-
- epoch: 5
|
12 |
- eval_f1: 0.8899
|
13 |
- eval_accuracy: 0.8875
|
14 |
- eval_runtime: 1.2105
|
15 |
- eval_samples_per_second: 1116.881
|
16 |
- eval_steps_per_second: 18.174
|
|
|
17 |
---
|
18 |
|
19 |
# electrical-classification-ModernBERT-base
|
@@ -62,7 +63,7 @@ You can use this model for Sentiment Analysis of the Electrical Device Feedback
|
|
62 |
```python
|
63 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
64 |
|
65 |
-
model_name = "disham993/electrical-classification-ModernBERT-
|
66 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
67 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
68 |
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
@@ -84,4 +85,4 @@ For a complete guide covering the entire process - from data tokenization to pus
|
|
84 |
|
85 |
## Last update
|
86 |
|
87 |
-
2025-01-05
|
|
|
8 |
datasets:
|
9 |
- disham993/ElectricalDeviceFeedbackBalanced
|
10 |
metrics:
|
11 |
+
- epoch: 5
|
12 |
- eval_f1: 0.8899
|
13 |
- eval_accuracy: 0.8875
|
14 |
- eval_runtime: 1.2105
|
15 |
- eval_samples_per_second: 1116.881
|
16 |
- eval_steps_per_second: 18.174
|
17 |
+
library_name: transformers
|
18 |
---
|
19 |
|
20 |
# electrical-classification-ModernBERT-base
|
|
|
63 |
```python
|
64 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
65 |
|
66 |
+
model_name = "disham993/electrical-classification-ModernBERT-base"
|
67 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
68 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
69 |
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
|
|
85 |
|
86 |
## Last update
|
87 |
|
88 |
+
2025-01-05
|