File size: 3,547 Bytes
50224a7
 
 
 
 
 
 
 
4e80ea4
50224a7
 
 
 
 
 
 
 
 
 
4e80ea4
50224a7
1d7cf1c
 
 
 
 
 
 
 
 
 
 
 
 
 
50224a7
 
 
4e80ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50224a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e80ea4
 
 
 
 
 
 
 
 
 
50224a7
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
library_name: peft
license: gemma
base_model: google/paligemma-3b-pt-224
tags:
- generated_from_trainer
datasets:
- imagefolder
- FastJobs/Visual_Emotional_Analysis
model-index:
- name: emotion_classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# emotion_classification

This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the [FastJobs/Visual_Emotional_Analysis](https://huggingface.co/datasets/FastJobs/Visual_Emotional_Analysis) dataset.

## Training Data

This model was trained on the [FastJobs/Visual_Emotional_Analysis](https://huggingface.co/datasets/FastJobs/Visual_Emotional_Analysis) dataset. 

The dataset contains:
- **800 images** annotated with **8 emotion labels**:
  - Anger
  - Contempt
  - Disgust
  - Fear
  - Happy
  - Neutral
  - Sad
  - Surprise

## Intended uses & limitations

### Intended Uses
- Emotion classification from visual inputs (images).

### Limitations
- May reflect biases from the training dataset.
- Performance may degrade in domains outside the training data.
- Not suitable for critical or sensitive decision-making tasks.

##  How to use this model
```python
from transformers import (PaliGemmaProcessor,PaliGemmaForConditionalGeneration,)
from transformers.image_utils import load_image
import torch
from transformers import BitsAndBytesConfig
from peft import get_peft_model
from huggingface_hub import login
from PIL import Image
login(api_key)

device = "cuda" if torch.cuda.is_available() else "CPU"

bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_type=torch.bfloat16
)

# Load base model
model_id = "google/paligemma-3b-pt-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, device_map="auto")
processor = PaliGemmaProcessor.from_pretrained(model_id)

# Load adapter
adapter_path = "digo-prayudha/emotion_classification" 
model = PeftModel.from_pretrained(model, adapter_path)

image = Image.open("image.jpg").convert("RGB")

prompt = (
    "Classify the emotion expressed in this image."
)

inputs = processor(
    text=prompt,
    images=image,
    return_tensors="pt",
    padding="longest",
    tokenize_newline_separately=False
).to(model.device)

model.eval() 
with torch.no_grad():
    outputs = model.generate(**inputs)

decoded_output = processor.decode(outputs[0], skip_special_tokens=True)

print("Predicted Emotion:", decoded_output)
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 5

### Training results
  | Step | Validation Loss |
  |:----:|:---------------:|
  | 100  | 2.684700        |
  | 200  | 1.282700        |
  | 300  | 1.085600        |
  | 400  | 0.984500        |
  | 500  | 0.861300        |
  | 600  | 0.822900        |
  | 700  | 0.807100        |
  | 800  | 0.753300        |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0