#!/usr/bin/env python3 from diffusers import DiffusionPipeline from safetensors.torch import load_file import torch from pathlib import Path from huggingface_hub import HfApi, hf_hub_download import os import hf_image_uploader as hiu import time api = HfApi() pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) pipe.to("cuda") # pipe.load_lora_weights("stabilityai/stable-diffusion-xl-base-1.0", weight_name="sd_xl_offset_example-lora_1.0.safetensors", low_cpu_mem_usage=True) # file = hf_hub_download("TheLastBen/Papercut_SDXL", filename="papercut.safetensors") file = hf_hub_download("hf-internal-testing/sdxl-0.9-daiton-lora", filename="daiton-xl-lora-test.safetensors") start_time = time.time() pipe.load_lora_weights("Pclanglais/TintinIA") pipe.fuse_lora() pipe.unfuse_lora() pipe.unload_lora_weights() pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style") pipe.fuse_lora() pipe.unload_lora_weights() pipe.unfuse_lora() pipe.load_lora_weights("ostris/crayon_style_lora_sdxl") pipe.fuse_lora() pipe.unload_lora_weights() pipe.unfuse_lora() print(time.time() - start_time) prompt = "masterpiece, best quality, mountain" images = pipe(prompt=prompt, num_inference_steps=20, generator=torch.manual_seed(0) ).images hiu.upload(images[0], "patrickvonplaten/images")