#!/usr/bin/env python3 import hf_image_uploader as hiu import torch from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS device = "cuda" dtype = torch.float16 num_images_per_prompt = 2 prior_pipeline = WuerstchenPriorPipeline.from_pretrained( "warp-ai/wuerstchen-prior", torch_dtype=dtype ).to(device) decoder_pipeline = WuerstchenDecoderPipeline.from_pretrained( "warp-ai/wuerstchen", torch_dtype=dtype ).to(device) caption = "Anthropomorphic cat dressed as a fire fighter" negative_prompt = "" prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True) decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="reduce-overhead", fullgraph=True) prior_output = prior_pipeline( prompt=caption, height=1024, width=1536, timesteps=DEFAULT_STAGE_C_TIMESTEPS, negative_prompt=negative_prompt, guidance_scale=4.0, num_images_per_prompt=num_images_per_prompt, ) images = decoder_pipeline( image_embeddings=prior_output.image_embeddings, prompt=caption, negative_prompt=negative_prompt, guidance_scale=0.0, output_type="pil", ).images for image in images: hiu.upload(image, repo_id="patrickvonplaten/images")