#!/usr/bin/env python3 from transformers import WhisperForCausalLM, WhisperForConditionalGeneration, WhisperProcessor import torch from datasets import load_dataset processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2") assistant_model = WhisperForCausalLM.from_pretrained("patrickvonplaten/whisper-large-v2-32-2") ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") sample = ds[0]["audio"] input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features predicted_ids = model.generate(input_features, assistant_model=assistant_model) # decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) print(transcription)