#!/usr/bin/env python3 from diffusers import AutoPipelineForText2Image import time import os from huggingface_hub import HfApi import torch from pathlib import Path path = "stabilityai/stable-diffusion-xl-base-1.0" api = HfApi() start_time = time.time() pipe = AutoPipelineForText2Image.from_pretrained(path, torch_dtype=torch.float16) pipe.enable_model_cpu_offload() lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora" lora_model_id = "TheLastBen/Papercut_SDXL" lora_filename = "kame_sdxl_v2-000020-16rank.safetensors" lora_filename = "papercut.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) prompt = "masterpiece, best quality, mountain" prompt = "papercut sonic" images = pipe(prompt=prompt, num_inference_steps=20, generator=torch.manual_seed(0) ).images for i, image in enumerate(images): file_name = f"aa_{i}" path = os.path.join(Path.home(), "images", f"{file_name}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png")