#!/usr/bin/env python3 from diffusers import StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler import time import os from huggingface_hub import HfApi # from compel import Compel import torch import sys from pathlib import Path import requests from PIL import Image from io import BytesIO # path = sys.argv[1] path = "gsdf/Counterfeit-V2.5" # path = "stabilityai/stable-diffusion-2-1" api = HfApi() start_time = time.time() pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config( pipe.scheduler.config, use_karras_sigmas=True ) pipe = pipe.to("cuda") pipe.load_lora_weights(".", weight_name="light_and_shadow.safetensors") prompt = "masterpiece, best quality, 1girl, at dusk" negative_prompt = ("(low quality, worst quality:1.4), (bad anatomy), (inaccurate limb:1.2), " "bad composition, inaccurate eyes, extra digit, fewer digits, (extra arms:1.2), large breasts") pipe.enable_xformers_memory_efficient_attention() images = pipe(prompt=prompt, negative_prompt=negative_prompt, width=512, height=768, num_inference_steps=15, num_images_per_prompt=4, cross_attention_kwargs={"scale": 0.5}, generator=torch.manual_seed(0) ).images for i, image in enumerate(images): file_name = f"aa_{i}" path = os.path.join(Path.home(), "images", f"{file_name}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png")